Inside the Atom

Last updated
Inside the Atom
Inside the Atom - bookcover.jpg
1974 edition cover
Author Isaac Asimov
CountryUnited States
LanguageEnglish
Subject Atomic physics
Genre Popular science
Published New York City
Publisher Abelard-Schuman
Media typePrint
Pages176 pp.

Inside the Atom is a popular science book by American author Isaac Asimov. The first edition of the book was published in 1956 by Abelard-Schuman. Revised editions were brought out in subsequent years. [1]

Overview

The book describes the internal structure of the atom. The sequence of concepts described in the book follows the sequence that those facts were discovered in. It describes the various sub-atomic structures within the atom, and the functions they fill in the whole structure. [2] Later chapters describe chemical elements and isotopes, the stability and instability of atomic nuclei, and finally atomic energy, the uses it has, and the threat that it poses. [1] [3] A review in the educational journal The Clearing House said that the book was "lucid", and that its "analytical style exemplifies the art of good teaching." The book is aimed at educated lay-readers, and high-school science students. [2] Inside the Atom ends on a cautionary note, stating "If only we can learn to use the knowledge we already have..."

In 1956, the book was used in a pilot program to advance science education sponsored by the American Association for the Advancement of Science. Approximately two hundred titles were circulated amongst high schools that did not have adequate science reading material. [4] Inside the atom there is positively charged nucleus and inside the nucleus there is positively charged proton and neutron (0)charge and outside part of nucleus there is negatively charged electron and it is revolving in specific orbit and there is K,L,M,N shell and for different elements the number of electron are changing In the atom on different shell now this time there are more shell defined by scientists name as O and p and there are 118 elements above 118 elements 94 or 98 elements are found by nature and other remaining 24 or 20 elements are made artificially discover by scientists

Related Research Articles

Atomic number Number of protons found in the nucleus of an atom

The atomic number or nuclear charge number of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (np) or the number of protons found in the nucleus for every atom of that element. The atomic number can be used to uniquely identify ordinary chemical elements. In an ordinary uncharged atom, the atomic number is also equal to the number of electrons.

Atom Smallest unit of a chemical element

An atom is the smallest unit of ordinary matter that forms a chemical element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are extremely small, typically around 100 picometers across. They are so small that accurately predicting their behavior using classical physics—as if they were tennis balls, for example—is not possible due to quantum effects.

Atomic orbital Mathematical function describing the location and behavior of an electron within an atom

In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in any specific region around the atom's nucleus. The term atomic orbital may also refer to the physical region or space where the electron can be calculated to be present, as predicted by the particular mathematical form of the orbital.

Plum pudding model Obsolete model of the atom

The plum pudding model is one of several historical scientific models of the atom. First proposed by J. J. Thomson in 1904 soon after the discovery of the electron, but before the discovery of the atomic nucleus, the model tried to explain two properties of atoms then known: that electrons are negatively charged particles and that atoms have no net electric charge. The plum pudding model has electrons surrounded by a volume of positive charge, like negatively charged "plums" embedded in a positively charged "pudding".

Atomic theory Model for understanding elemental particles

Atomic theory is the scientific theory that matter is composed of particles called atoms. Atomic theory traces its origins to an ancient philosophical tradition known as atomism. According to this idea, if one were to take a lump of matter and cut it into ever smaller pieces, one would eventually reach a point where the pieces could not be further cut into anything smaller. Ancient Greek philosophers called these hypothetical ultimate particles of matter atomos, a word which meant "uncut".

Bohr model Atomic model introduced by Niels Bohr in 1913

In atomic physics, the Bohr model or Rutherford–Bohr model, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by orbiting electrons—similar to the structure of the Solar System, but with attraction provided by electrostatic forces in place of gravity. It came after the solar system Joseph Larmor model (1897), the cubical model (1902), the Hantaro Nagaoka Saturnian model (1904), the plum pudding model (1904), the quantum Arthur Haas model (1910), the Rutherford model (1911), and the nuclear quantum John William Nicholson model (1912). The improvement over the 1911 Rutherford model mainly concerned the new quantum physical interpretation introduced by Haas and Nicholson, but forsaking any attempt to align with classical physics radiation.

Chemistry Scientific discipline

Chemistry is the scientific study of the properties and behavior of matter. It is a natural science that covers the elements that make up matter to the compounds composed of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during a reaction with other substances.

Henry Moseley English physicist

Henry Gwyn Jeffreys Moseley was an English physicist, whose contribution to the science of physics was the justification from physical laws of the previous empirical and chemical concept of the atomic number. This stemmed from his development of Moseley's law in X-ray spectra.

Nuclear physics Field of physics that deals with the structure and behavior of atomic nuclei

Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.

Periodic table Tabular arrangement of the chemical elements ordered by atomic number

The periodic table, also known as the periodic table of the (chemical) elements, is a tabular display of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of chemistry. It is a graphic formulation of the periodic law, which states that the properties of the chemical elements exhibit a periodic dependence on their atomic numbers. The table is divided into four roughly rectangular areas called blocks. The rows of the table are called periods, and the columns are called groups. Elements from the same column group of the periodic table show similar chemical characteristics. Trends run through the periodic table, with nonmetallic character increasing from left to right across a period, and from down to up across a group, and metallic character increasing in the opposite direction. The underlying reason for these trends is electron configurations of atoms.

Atomic radius Measure of the size of its atoms

The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Four widely used definitions of atomic radius are: Van der Waals radius, ionic radius, metallic radius and covalent radius. Typically, because of the difficulty to isolate atoms in order to measure their radii separately, atomic radius is measured in a chemically bonded state; however theoretical calculations are simpler when considering atoms in isolation. The dependencies on environment, probe, and state lead to a multiplicity of definitions.

Ionization energy Energy needed to remove an electron

In physics and chemistry, ionization energy (IE) (American English spelling), ionisation energy (British English spelling) is the minimum energy required to remove the most loosely bound electron of an isolated gaseous atom, positive ion, or molecule. The first ionization energy is quantitatively expressed as

Oganesson Chemical element, symbol Og and atomic number 118

Oganesson is a synthetic chemical element with the symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scientists. In December 2015, it was recognized as one of four new elements by the Joint Working Party of the international scientific bodies IUPAC and IUPAP. It was formally named on 28 November 2016. The name honors the nuclear physicist Yuri Oganessian, who played a leading role in the discovery of the heaviest elements in the periodic table. It is one of only two elements named after a person who was alive at the time of naming, the other being seaborgium, and the only element whose eponym is alive today.

Electron configuration Mode of arrangement of electrons in different shells of an atom.

In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule in atomic or molecular orbitals. For example, the electron configuration of the neon atom is 1s2 2s2 2p6, meaning that the 1s, 2s and 2p subshells are occupied by 2, 2 and 6 electrons respectively.

In atomic physics, the effective nuclear charge is the actual amount of positive (nuclear) charge experienced by an electron in a multi-electron atom. The term "effective" is used because the shielding effect of negatively charged electrons prevent higher energy electrons from experiencing the full nuclear charge of the nucleus due to the repelling effect of inner layer. The effective nuclear charge experienced by an electron is also called the core charge. It is possible to determine the strength of the nuclear charge by the oxidation number of the atom. Most of the physical and chemical properties of the elements can be explained on the basis of electronic configuration. Consider the behavior of ionization energies in the periodic table. It is known that the magnitude of ionization potential depends upon the following factors:

  1. Size of atom;
  2. The nuclear charge;
  3. The screening effect of the inner shells, and
  4. The extent to which the outermost electron penetrates into the charge cloud set up by the inner lying electron.
Rutherford model First atomic structure proposal to include a nucleus and electron orbits

The Rutherford model was devised by the New Zealand-born physicist Ernest Rutherford to describe an atom. Rutherford directed the Geiger–Marsden experiment in 1909, which suggested, upon Rutherford's 1911 analysis, that J. J. Thomson's plum pudding model of the atom was incorrect. Rutherford's new model for the atom, based on the experimental results, contained new features of a relatively high central charge concentrated into a very small volume in comparison to the rest of the atom and with this central volume also containing the bulk of the atomic mass of the atom. This region would be known as the "nucleus" of the atom.

Core electrons are the electrons in an atom that are not valence electrons and do not participate in chemical bonding. The nucleus and the core electrons of an atom form the atomic core. Core electrons are tightly bound to the nucleus. Therefore, unlike valence electrons, core electrons play a secondary role in chemical bonding and reactions by screening the positive charge of the atomic nucleus from the valence electrons.

Atomic nucleus Core of the atom; composed of bound nucleons (protons and neutrons)

The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in 1932, models for a nucleus composed of protons and neutrons were quickly developed by Dmitri Ivanenko and Werner Heisenberg. An atom is composed of a positively charged nucleus, with a cloud of negatively charged electrons surrounding it, bound together by electrostatic force. Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force.

In chemistry and atomic physics, an electron shell may be thought of as an orbit followed by electrons around an atom's nucleus. The closest shell to the nucleus is called the "1 shell", followed by the "2 shell", then the "3 shell", and so on farther and farther from the nucleus. The shells correspond to the principal quantum numbers or are labeled alphabetically with the letters used in X-ray notation.

Chemistry: A Volatile History is a 2010 BBC documentary on the history of chemistry presented by Jim Al-Khalili. It was nominated for the 2010 British Academy Television Awards in the category Specialist Factual.

References

  1. 1 2 "Books of the Week". The Science News-Letter. 74 (11): 172. 13 September 1958.
  2. 1 2 Bruce, Guy V. (September 1957). "Inside the Atom by Isaac Asimov". The Clearing House. 32 (1): 48–49. JSTOR   30180040.
  3. "Inside the Atom". Bulletin from Virginia Kirkus' Service. 1 May 1956.
  4. Deason, Hilary J. (23 November 1956). "Traveling High-School Science Libraries". Science. New Series. 124 (3230): 1013–1017. JSTOR   1753196.