Integration host factor

Last updated
Integration host factor subunit alpha
1OWG IHF complex.png
Crystallographic structure of the heterodimeric integration host factor (IHF) complex. [1] The alpha and beta subunits are colored cyan and green respectively while double stranded DNA is depicted as a brown cartoon.
Identifiers
Organism Escherichia coli K12
SymbolihfA
Entrez 945472
PDB 1OWF
RefSeq (Prot) NP_416227.1
UniProt P0A6X7
Other data
Chromosome Genomic: 1.8 - 1.8 Mb
Search for
Structures Swiss-model
Domains InterPro
Integration host factor subunit beta
Identifiers
Organism Escherichia coli K12
SymbolihfB
Entrez 945533
PDB 1OWF
RefSeq (Prot) NP_415432.1
UniProt P0A6Y1
Other data
Chromosome Genomic: 0.96 - 0.96 Mb
Search for
Structures Swiss-model
Domains InterPro

The integration host factor (IHF) is a bacterial DNA binding protein complex that facilitates genetic recombination, replication, and transcription by binding to specific DNA sequences and bending the DNA. [2] It also facilitates the integration of foreign DNA into the host genome. [3] It is a heterodimeric complex composed of two homologous subunits IHFalpha and IHFbeta.

Contents

Protein

Integration Host factor is a DNA-binding/bending Protein of E. Coli and some of its bacteriophages, it is essential for gene regulation, site-specific recombination, and other physiological processes. [4] Being similar but just different enough from HU, a prominent binding protein, that specializes in the formation of bacterial nucleoids. [5] In addition, IHF is composed of two subunits, himA, and himD genes. [5] With this information, we know that IHF is a DNA-binding protein of E. Coli as well as other bacteria used to regulate genes and other physiological operations.

Function

When the Integration Host Factor was first discovered, it was only known for the site-specific recombination of bacteriophage. [4] This is all we knew for a while but through another article, we were able to find that with further research, IHF plays a key role in the scope of physiological processes of E. Coli, including site-specific recombination activities, phage packaging and partitioning, DNA replication, and the expression of many genes. [5] This leads to the fact that IHF is an essential protein used to replicate DNA, expression of genes, as well as phage packaging in cells.

lambda phage salmonella mutations

The article discusses the Transfer of genetic information from E. coli to salmonella cells (via lambda phage) and how it can cause changes to the transduction and lysogenic phases, in some mutated Salmonella offspring. The results of these changes were the occurrence of no infectious centers and/or plaques present in mutated strains. The article also discusses the mating of E. Coli and salmonella cells using the lambda phage and the P1 pathway to deliver the genetic information from the E. Coli to the salmonella cells.

During this process the E. Coli k-12 genes are transduced into the salmonella and later expressed using IHF (integrated host factors), during the lytic phase. Some of the salmonella wild type mutations had changes to their lysogenic state, when galactose+ was present. This resulted in a failure of cell lysis, even if cells were treated with mitomycin, ultraviolet light and/or even heat, many of the mutated cells could still not achieve lysis. According to a supporting article (“Genetic recombination between Escherichia and Salmonella typhimurium”). By Baron, L.S., W.F. Carey.W.M. Spilman.1959. Proc.Nat.Acad.Sci.U.S.A.45:976-984. AFalkow,S., As well as  L.S.Baron.1970.(”Plasmid formation after lambda phage infection of Escherichlacolf-Salmonella typhosa hybrids”).J.Bacteriol.102:228-290.s The reason for these cells having resistant to lysis, as well as the survivability of these cells in harsh physical environments,this is due to salmonellas ability salmonella repressor synthesis, in the mutated forms of salmonella, this in turn makes the mutated strains immune from certain infection and various physical forces, which would kill non-mutated strains. [6]

The Enterobacteria is a virus, this virus or bacteriophage infects certain bacteria. In the lambda phage, it is specifically E. coli. The wild type, having a temperate life cycle, allows the virus to exist in 2 life cycle stages, A lysogeny, and a lytic stage. During these life cycles it destroys the cell through the process of lysis, during the lysis process the offspring of the virus are released from the burst cell. Certain mutated strains of the virus enter a lytic stage, instead of lysing the cell. During this phase, they saturate the cell with the copies of the bacteriophages of an already lysed cell. The cell has a capsid (head) and a tail, the capsid carries a double-stranded DNA which carries the infectious genetic coding material. During this phase, the virus locates coding that allows it to bind to the E. coli. The bacteriophage then injects genetic material into the cell. This usually occurs in the lytic phase. After this the virus will hijack the bacterial DNA, it then uses the cell's internal structures to produce many copies of the bacteriophages, this is followed by lysis and the virus is set free to infect other cells. During the lysogenic phase, the virus may insert itself into the DNA of the bacterial DNA. The virus may then develop into a non-parthenogenetic virus, where it exists as a commensal relationship and does not harm the bacterial cell. [6]

HU and IHF in experimentally mutated E.coli Strains

HU and integration host factor function as auxiliary proteins in cleavage of phage lambda cohesive ends by terminase is an academic journal written by the Department of Molecular Genetics. In their article, they created isogenic strains of E.coli that were lacking HU or integration host factors to test whether bacteriophage would grow under these conditions.

HU and integration host factors (referred to as IHF throughout) are DNA-binding proteins that participate in several DNA replication processes. [7] HU and IHF are both responsible for inhibiting and stimulating DNA replication in E.coli. Structurally, HU and IHF are overall similar, which allows them to be interchangeable with one another. As proven in the Journal of Bacteriology experiment’s results, the two are interchangeable in some processes, but they are not perfectly interchangeable. If a bacteriophage contains a cos site mutation or the host has a DNA gyrase mutation, IHF is required for there to be growth of the bacteriophage [7]

The Journal of Bacteriology experiment tested multiple different things about bacteriophage growth when lacking HU or IHF or both. They found that if the phage was lacking both HU and IHF the lytic growth was restricted, and plaques were unable to form. There was also a noticeable difference in burst sizes when one was missing, compared to both of them missing. Similarly, those strains lacking HU or IHF showed that late gene transcription was reduced by 3 folds. Overall, they found that HU and IHF, having at least one of them present in bacteriophage is necessary for DNA maturation to occur. [7]

Related Research Articles

<span class="mw-page-title-main">Bacteriophage</span> Virus that infects and replicates within bacteria

A bacteriophage, also known informally as a phage, is a virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν, meaning "to devour". Bacteriophages are composed of proteins that encapsulate a DNA or RNA genome, and may have structures that are either simple or elaborate. Their genomes may encode as few as four genes and as many as hundreds of genes. Phages replicate within the bacterium following the injection of their genome into its cytoplasm.

<span class="mw-page-title-main">Lambda phage</span> Bacteriophage that infects Escherichia coli

Enterobacteria phage λ is a bacterial virus, or bacteriophage, that infects the bacterial species Escherichia coli. It was discovered by Esther Lederberg in 1950. The wild type of this virus has a temperate life cycle that allows it to either reside within the genome of its host through lysogeny or enter into a lytic phase, during which it kills and lyses the cell to produce offspring. Lambda strains, mutated at specific sites, are unable to lysogenize cells; instead, they grow and enter the lytic cycle after superinfecting an already lysogenized cell.

<span class="mw-page-title-main">Cloning vector</span> Small piece of maintainable DNA

A cloning vector is a small piece of DNA that can be stably maintained in an organism, and into which a foreign DNA fragment can be inserted for cloning purposes. The cloning vector may be DNA taken from a virus, the cell of a higher organism, or it may be the plasmid of a bacterium. The vector contains features that allow for the convenient insertion of a DNA fragment into the vector or its removal from the vector, for example through the presence of restriction sites. The vector and the foreign DNA may be treated with a restriction enzyme that cuts the DNA, and DNA fragments thus generated contain either blunt ends or overhangs known as sticky ends, and vector DNA and foreign DNA with compatible ends can then be joined by molecular ligation. After a DNA fragment has been cloned into a cloning vector, it may be further subcloned into another vector designed for more specific use.

<span class="mw-page-title-main">Prophage</span> Bacteriophage genome that is integrated into a bacterial cell

A prophage is a bacteriophage genome that is integrated into the circular bacterial chromosome or exists as an extrachromosomal plasmid within the bacterial cell. Integration of prophages into the bacterial host is the characteristic step of the lysogenic cycle of temperate phages. Prophages remain latent in the genome through multiple cell divisions until activation by an external factor, such as UV light, leading to production of new phage particles that will lyse the cell and spread. As ubiquitous mobile genetic elements, prophages play important roles in bacterial genetics and evolution, such as in the acquisition of virulence factors.

<span class="mw-page-title-main">Transduction (genetics)</span> Transfer process in genetics

Transduction is the process by which foreign DNA is introduced into a cell by a virus or viral vector. An example is the viral transfer of DNA from one bacterium to another and hence an example of horizontal gene transfer. Transduction does not require physical contact between the cell donating the DNA and the cell receiving the DNA, and it is DNase resistant. Transduction is a common tool used by molecular biologists to stably introduce a foreign gene into a host cell's genome.

<span class="mw-page-title-main">Lytic cycle</span> Cycle of viral reproduction

The lytic cycle is one of the two cycles of viral reproduction, the other being the lysogenic cycle. The lytic cycle results in the destruction of the infected cell and its membrane. Bacteriophages that only use the lytic cycle are called virulent phages.

<i>Escherichia virus T4</i> Species of bacteriophage

Escherichia virus T4 is a species of bacteriophages that infect Escherichia coli bacteria. It is a double-stranded DNA virus in the subfamily Tevenvirinae from the family Myoviridae. T4 is capable of undergoing only a lytic life cycle and not the lysogenic life cycle. The species was formerly named T-even bacteriophage, a name which also encompasses, among other strains, Enterobacteria phage T2, Enterobacteria phage T4 and Enterobacteria phage T6.

DNA gyrase, or simply gyrase, is an enzyme within the class of topoisomerase and is a subclass of Type II topoisomerases that reduces topological strain in an ATP dependent manner while double-stranded DNA is being unwound by elongating RNA-polymerase or by helicase in front of the progressing replication fork. It is the only known enzyme to actively contribute negative supercoiling to DNA, while it also is capable of relaxing positive supercoils. It does so by looping the template to form a crossing, then cutting one of the double helices and passing the other through it before releasing the break, changing the linking number by two in each enzymatic step. This process occurs in bacteria, whose single circular DNA is cut by DNA gyrase and the two ends are then twisted around each other to form supercoils. Gyrase is also found in eukaryotic plastids: it has been found in the apicoplast of the malarial parasite Plasmodium falciparum and in chloroplasts of several plants. Bacterial DNA gyrase is the target of many antibiotics, including nalidixic acid, novobiocin, albicidin, and ciprofloxacin.

<span class="mw-page-title-main">Lysogenic cycle</span> Process of virus reproduction

Lysogeny, or the lysogenic cycle, is one of two cycles of viral reproduction. Lysogeny is characterized by integration of the bacteriophage nucleic acid into the host bacterium's genome or formation of a circular replicon in the bacterial cytoplasm. In this condition the bacterium continues to live and reproduce normally, while the bacteriophage lies in a dormant state in the host cell. The genetic material of the bacteriophage, called a prophage, can be transmitted to daughter cells at each subsequent cell division, and later events can release it, causing proliferation of new phages via the lytic cycle.

<span class="mw-page-title-main">T7 phage</span> Species of virus

Bacteriophage T7 is a bacteriophage, a virus that infects bacteria. It infects most strains of Escherichia coli and relies on these hosts to propagate. Bacteriophage T7 has a lytic life cycle, meaning that it destroys the cell it infects. It also possesses several properties that make it an ideal phage for experimentation: its purification and concentration have produced consistent values in chemical analyses; it can be rendered noninfectious by exposure to UV light; and it can be used in phage display to clone RNA binding proteins.

<i>Salmonella virus P22</i> Species of virus

Salmonella virus P22 is a bacteriophage in the Podoviridae family that infects Salmonella typhimurium. Like many phages, it has been used in molecular biology to induce mutations in cultured bacteria and to introduce foreign genetic material. P22 has been used in generalized transduction and is an important tool for investigating Salmonella genetics.

<span class="mw-page-title-main">Bacteriophage MS2</span> Species of virus

Bacteriophage MS2, commonly called MS2, is an icosahedral, positive-sense single-stranded RNA virus that infects the bacterium Escherichia coli and other members of the Enterobacteriaceae. MS2 is a member of a family of closely related bacterial viruses that includes bacteriophage f2, bacteriophage Qβ, R17, and GA.

P1 is a temperate bacteriophage that infects Escherichia coli and some other bacteria. When undergoing a lysogenic cycle the phage genome exists as a plasmid in the bacterium unlike other phages that integrate into the host DNA. P1 has an icosahedral head containing the DNA attached to a contractile tail with six tail fibers. The P1 phage has gained research interest because it can be used to transfer DNA from one bacterial cell to another in a process known as transduction. As it replicates during its lytic cycle it captures fragments of the host chromosome. If the resulting viral particles are used to infect a different host the captured DNA fragments can be integrated into the new host's genome. This method of in vivo genetic engineering was widely used for many years and is still used today, though to a lesser extent. P1 can also be used to create the P1-derived artificial chromosome cloning vector which can carry relatively large fragments of DNA. P1 encodes a site-specific recombinase, Cre, that is widely used to carry out cell-specific or time-specific DNA recombination by flanking the target DNA with loxP sites.

<span class="mw-page-title-main">Corynebacteriophage</span> Virus of bacteria

A corynebacteriophage is a DNA-containing bacteriophage specific for bacteria of genus Corynebacterium as its host. Corynebacterium diphtheriae virus strain Corynebacterium diphtheriae phage introduces toxigenicity into strains of Corynebacterium diphtheriae as it encodes diphtheria toxin, it has subtypes beta c and beta vir. According to proposed taxonomic classification, corynephages β and ω are unclassified members of the genus Lambdavirus, family Siphoviridae.

<span class="mw-page-title-main">Phage typing</span>

Phage typing is a phenotypic method that uses bacteriophages for detecting and identifying single strains of bacteria. Phages are viruses that infect bacteria and may lead to bacterial cell lysis. The bacterial strain is assigned a type based on its lysis pattern. Phage typing was used to trace the source of infectious outbreaks throughout the 1900s, but it has been replaced by genotypic methods such as whole genome sequencing for epidemiological characterization.

<span class="mw-page-title-main">Bacteriophage P2</span> Species of virus

Bacteriophage P2, scientific name Escherichia virus P2, is a temperate phage that infects E. coli. It is a tailed virus with a contractile sheath and is thus classified in the genus Peduovirus, subfamily Peduovirinae, family Myoviridae within order Caudovirales. This genus of viruses includes many P2-like phages as well as the satellite phage P4.

Zygotic induction occurs when a bacterial cell carrying the silenced DNA of a bacterial virus in its chromosome transfers the viral DNA along with its own DNA to another bacterial cell lacking the virus, causing the recipient of the DNA to break open. In the donor cell, a repressor protein encoded by the prophage keeps the viral genes turned off so that virus is not produced. When DNA is transferred to the recipient cell by conjugation, the viral genes in the transferred DNA are immediately turned on because the recipient cell lacks the repressor. As a result, many virus are made in the recipient cell, and lysis eventually occurs to release the new virus.

<span class="mw-page-title-main">Bacterial DNA binding protein</span>

In molecular biology, bacterial DNA binding proteins are a family of small, usually basic proteins of about 90 residues that bind DNA and are known as histone-like proteins. Since bacterial binding proteins have a diversity of functions, it has been difficult to develop a common function for all of them. They are commonly referred to as histone-like and have many similar traits with the eukaryotic histone proteins. Eukaryotic histones package DNA to help it to fit in the nucleus, and they are known to be the most conserved proteins in nature. Examples include the HU protein in Escherichia coli, a dimer of closely related alpha and beta chains and in other bacteria can be a dimer of identical chains. HU-type proteins have been found in a variety of bacteria and archaea, and are also encoded in the chloroplast genome of some algae. The integration host factor (IHF), a dimer of closely related chains which is suggested to function in genetic recombination as well as in translational and transcriptional control is found in Enterobacteria and viral proteins including the African swine fever virus protein A104R.

<span class="mw-page-title-main">CII protein</span> InterPro Family

cII or transcriptional activator II is a DNA-binding protein and important transcription factor in the life cycle of lambda phage. It is encoded in the lambda phage genome by the 291 base pair cII gene. cII plays a key role in determining whether the bacteriophage will incorporate its genome into its host and lie dormant (lysogeny), or replicate and kill the host (lysis).

Escherichia virus CC31, formerly known as Enterobacter virus CC31, is a dsDNA bacteriophage of the subfamily Tevenvirinae responsible for infecting the bacteria family of Enterobacteriaceae. It is one of two discovered viruses of the genus Karamvirus, diverging away from the previously discovered T4virus, as a clonal complex (CC). CC31 was first isolated from Escherichia coli B strain S/6/4 and is primarily associated with Escherichia, even though is named after Enterobacter.

References

  1. PDB: 1OWG ; Lynch TW, Read EK, Mattis AN, Gardner JF, Rice PA (July 2003). "Integration host factor: putting a twist on protein-DNA recognition". Journal of Molecular Biology. 330 (3): 493–502. doi:10.1016/s0022-2836(03)00529-1. PMID   12842466.
  2. Travers A (April 1997). "DNA-protein interactions: IHF--the master bender". Current Biology. 7 (4): R252–R254. Bibcode:1997CBio....7R.252T. doi: 10.1016/s0960-9822(06)00114-x . PMID   9162504.
  3. Friedman DI (November 1988). "Integration host factor: a protein for all reasons". Cell. 55 (4): 545–54. doi:10.1016/0092-8674(88)90213-9. hdl: 2027.42/27063 . PMID   2972385.
  4. 1 2 Freundlich M, Ramani N, Mathew E, Sirko A, Tsui P (September 1992). "The role of integration host factor in gene expression in Escherichia coli". Molecular Microbiology. 6 (18): 2557–2563. doi:10.1111/j.1365-2958.1992.tb01432.x. PMID   1447969.
  5. 1 2 3 Tsui P, Huang L, Freundlich M (September 1991). "Integration host factor binds specifically to multiple sites in the ompB promoter of Escherichia coli and inhibits transcription". Journal of Bacteriology. 173 (18): 5800–5807. doi:10.1128/jb.173.18.5800-5807.1991. PMC   208313 . PMID   1885551.
  6. 1 2 Baron LS, Penido E, Ryman IR, Falkow S (April 1970). "Behavior of coliphage lambda in hybrids between Escherichia coli and Salmonella". Journal of Bacteriology. 102 (1): 221–233. doi:10.1128/jb.102.1.221-233.1970. PMC   284990 . PMID   4908675.
  7. 1 2 3 Mendelson I, Gottesman M, Oppenheim AB (March 1991). "HU and integration host factor function as auxiliary proteins in cleavage of phage lambda cohesive ends by terminase". Journal of Bacteriology. 173 (5): 1670–1676. doi:10.1128/jb.173.5.1670-1676.1991. PMC   207316 . PMID   1825651.