Interaction technique

Last updated
Fold n' Drop, a crossing-based interaction technique for dragging and dropping files between overlapping windows Foldndrop.png
Fold n' Drop, a crossing-based interaction technique for dragging and dropping files between overlapping windows

An interaction technique, user interface technique or input technique is a combination of hardware and software elements that provides a way for computer users to accomplish a single task. For example, one can go back to the previously visited page on a Web browser by either clicking a button, pressing a key, performing a mouse gesture or uttering a speech command. It is a widely used term in human-computer interaction. In particular, the term "new interaction technique" is frequently used to introduce a novel user interface design idea.

Contents

Definition

Although there is no general agreement on the exact meaning of the term "interaction technique", the most popular definition is from the computer graphics literature:

An interaction technique is a way of using a physical input/output device to perform a generic task in a human-computer dialogue. [1]

A more recent variation is:

An interaction technique is the fusion of input and output, consisting of all software and hardware elements, that provides a way for the user to accomplish a task. [2]

The computing view

From the computer's perspective, an interaction technique involves:

Consider for example the process of deleting a file using a contextual menu. This assumes the existence of a mouse (input device), a screen (output device), and a piece of code that paints a menu and updates its selection (user feedback) and sends a command to the file system when the user clicks on the "delete" item (interpretation). User feedback can be further used to confirm that the command has been invoked.

The user's view

From the user's perspective, an interaction technique is a way to perform a single computing task and can be informally expressed with user instructions or usage scenarios. For example, "to delete a file, right-click on the file you want to delete, then click on the delete item".

The designer's view

From the user interface designer's perspective, an interaction technique is a well-defined solution to a specific user interface design problem. Interaction techniques as conceptual ideas can be refined, extended, modified and combined. For example, contextual menus are a solution to the problem of rapidly selecting commands. Pie menus are a radial variant of contextual menus. Marking menus combine pie menus with gesture recognition.

Level of granularity

One extant cause of confusion in the general discussion of interaction is a lack of clarity about levels of granularity. [3] Interaction techniques are usually characterized at a low level of granularity—not necessarily at the lowest level of physical events, but at a level that is technology-, platform-, and/or implementation-dependent. For example, interaction techniques exist that are specific to mobile devices, touch-based displays, traditional mouse/keyboard inputs, and other paradigms—in other words, they are dependent on a specific technology or platform. In contrast, viewed at higher levels of granularity, interaction is not tied to any specific technology or platform. The interaction of 'filtering', for example, can be characterized in a way that is technology-independent—e.g., performing an action such that some information is hidden and only a subset of the original information remains. Such an interaction could be implemented using any number of techniques, and on any number of platforms and technologies. [4] See also the discussion of #interaction patterns below.

Interaction tasks and domain objects

An interaction task is "the unit of an entry of information by the user", [1] such as entering a piece of text, issuing a command, or specifying a 2D position. A similar concept is that of domain object, which is a piece of application data that can be manipulated by the user. [5]

Interaction techniques are the glue between physical I/O devices and interaction tasks or domain objects. [5] [6] Different types of interaction techniques can be used to map a specific device to a specific domain object. For example, different gesture alphabets exist for pen-based text input.

In general, the less compatible the device is with the domain object, the more complex the interaction technique. [7] For example, using a mouse to specify a 2D point involves a trivial interaction technique, whereas using a mouse to rotate a 3D object requires more creativity to design the technique and more lines of code to implement it.

A current trend is to avoid complex interaction techniques by matching physical devices with the task as close as possible, [7] such as exemplified by the field of tangible computing. But this is not always a feasible solution. Furthermore, device/task incompatibilities are unavoidable in computer accessibility, where a single switch can be used to control the whole computer environment.

Interaction style

Interaction techniques that share the same metaphor or design principles can be seen as belonging to the same interaction style. General examples are command line and direct manipulation user interfaces.

Interaction patterns

While interaction techniques are typically technology-, platform-, and/or implementation-dependent (see #level of granularity above), human-computer or human-information interactions can be characterized at higher levels of abstraction that are independent of particular technologies and platforms. At such levels of abstraction, the concern is not precisely how an interaction is performed; rather, the concern is a conceptual characterization of what the interaction is, and what the general utility of the interaction is for the user(s). Thus, any single interaction pattern may be instantiated by any number of interaction techniques, on any number of different technologies and platforms. Interaction patterns are more concerned with the timeless, invariant qualities of an interaction. [4]

Visualization technique

Interaction techniques essentially involve data entry and manipulation, and thus place greater emphasis on input than output. Output is merely used to convey affordances and provide user feedback. The use of the term input technique further reinforces the central role of input. Conversely, techniques that mainly involve data exploration and thus place greater emphasis on output are called visualization techniques. They are studied in the field of information visualization.

Research and innovation

A large part of research in human-computer interaction involves exploring easier-to-learn or more efficient interaction techniques for common computing tasks. This includes inventing new (post-WIMP) interaction techniques, possibly relying on methods from user interface design, and assessing their efficiency with respect to existing techniques using methods from experimental psychology. Examples of scientific venues in these topics are the UIST and the CHI conferences. Other research focuses on the specification of interaction techniques, sometimes using formalisms such as Petri nets for the purposes of formal verification. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Computer mouse</span> Pointing device used to control a computer

A computer mouse is a hand-held pointing device that detects two-dimensional motion relative to a surface. This motion is typically translated into the motion of the pointer on a display, which allows a smooth control of the graphical user interface of a computer.

<span class="mw-page-title-main">Graphical user interface</span> User interface allowing interaction through graphical icons and visual indicators

A graphical user interface, or GUI, is a form of user interface that allows users to interact with electronic devices through graphical icons and visual indicators such as secondary notation. In many applications, GUIs are used instead of text-based UIs, which are based on typed command labels or text navigation. GUIs were introduced in reaction to the perceived steep learning curve of command-line interfaces (CLIs), which require commands to be typed on a computer keyboard.

<span class="mw-page-title-main">Pointing device gesture</span> Computer input method

In computing, a pointing device gesture or mouse gesture is a way of combining pointing device or finger movements and clicks that the software recognizes as a specific computer event and responds to accordingly. They can be useful for people who have difficulties typing on a keyboard. For example, in a web browser, a user can navigate to the previously viewed page by pressing the right pointing device button, moving the pointing device briefly to the left, then releasing the button.

<span class="mw-page-title-main">Pointing device</span> Human interface device for computers

A pointing device is a human interface device that allows a user to input spatial data to a computer. Graphical user interfaces (GUI) and CAD systems allow the user to control and provide data to the computer using physical gestures by moving a hand-held mouse or similar device across the surface of the physical desktop and activating switches on the mouse. Movements of the pointing device are echoed on the screen by movements of the pointer and other visual changes. Common gestures are point and click and drag and drop.

<span class="mw-page-title-main">User interface</span> Means by which a user interacts with and controls a machine

In the industrial design field of human–computer interaction, a user interface (UI) is the space where interactions between humans and machines occur. The goal of this interaction is to allow effective operation and control of the machine from the human end, while the machine simultaneously feeds back information that aids the operators' decision-making process. Examples of this broad concept of user interfaces include the interactive aspects of computer operating systems, hand tools, heavy machinery operator controls and process controls. The design considerations applicable when creating user interfaces are related to, or involve such disciplines as, ergonomics and psychology.

In computer science, human–computer interaction, and interaction design, direct manipulation is an approach to interfaces which involves continuous representation of objects of interest together with rapid, reversible, and incremental actions and feedback. As opposed to other interaction styles, for example, the command language, the intention of direct manipulation is to allow a user to manipulate objects presented to them, using actions that correspond at least loosely to manipulation of physical objects. An example of direct manipulation is resizing a graphical shape, such as a rectangle, by dragging its corners or edges with a mouse.

<span class="mw-page-title-main">Menu (computing)</span> List of options or commands within a computer program

In user interface design, a menu is a list of options presented to the user.

ISO 9241 is a multi-part standard from the International Organization for Standardization (ISO) covering ergonomics of human-system interaction and related, human-centered design processes. It is managed by the ISO Technical Committee 159. It was originally titled Ergonomic requirements for office work with visual display terminals (VDTs). From 2006 onwards, the standards were retitled to the more generic Ergonomics of Human System Interaction.

<span class="mw-page-title-main">WIMP (computing)</span> Style of human-computer interaction

In human–computer interaction, WIMP stands for "windows, icons, menus, pointer", denoting a style of interaction using these elements of the user interface. Other expansions are sometimes used, such as substituting "mouse" and "mice" for menus, or "pull-down menu" and "pointing" for pointer.

<span class="mw-page-title-main">Interactivity</span> Interaction between users and computers

Across the many fields concerned with interactivity, including information science, computer science, human-computer interaction, communication, and industrial design, there is little agreement over the meaning of the term "interactivity", but most definitions are related to interaction between users and computers and other machines through a user interface. Interactivity can however also refer to interaction between people. It nevertheless usually refers to interaction between people and computers – and sometimes to interaction between computers – through software, hardware, and networks.

The following outline is provided as an overview of and topical guide to human–computer interaction:

GOMS is a specialized human information processor model for human-computer interaction observation that describes a user's cognitive structure on four components. In the book The Psychology of Human Computer Interaction. written in 1983 by Stuart K. Card, Thomas P. Moran and Allen Newell, the authors introduce: "a set of Goals, a set of Operators, a set of Methods for achieving the goals, and a set of Selections rules for choosing among competing methods for goals." GOMS is a widely used method by usability specialists for computer system designers because it produces quantitative and qualitative predictions of how people will use a proposed system.

<span class="mw-page-title-main">Tangible user interface</span>

A tangible user interface (TUI) is a user interface in which a person interacts with digital information through the physical environment. The initial name was Graspable User Interface, which is no longer used. The purpose of TUI development is to empower collaboration, learning, and design by giving physical forms to digital information, thus taking advantage of the human ability to grasp and manipulate physical objects and materials.

Multimodal interaction provides the user with multiple modes of interacting with a system. A multimodal interface provides several distinct tools for input and output of data.

In human–computer interaction, a cursor is an indicator used to show the current position on a computer monitor or other display device that will respond to input, such as a text cursor or a mouse pointer.

<span class="mw-page-title-main">User interface design</span> Planned operator–machine interaction

User interface (UI) design or user interface engineering is the design of user interfaces for machines and software, such as computers, home appliances, mobile devices, and other electronic devices, with the focus on maximizing usability and the user experience. In computer or software design, user interface (UI) design primarily focuses on information architecture. It is the process of building interfaces that clearly communicate to the user what's important. UI design refers to graphical user interfaces and other forms of interface design. The goal of user interface design is to make the user's interaction as simple and efficient as possible, in terms of accomplishing user goals. User-centered design is typically accomplished through the execution of modern design thinking which involves empathizing with the target audience, defining a problem statement, ideating potential solutions, prototyping wireframes, and testing prototypes in order to refine final interface mockups.

A context-sensitive user interface offers the user options based on the state of the active program. Context sensitivity is ubiquitous in current graphical user interfaces, often in context menus.

In computing, 3D interaction is a form of human-machine interaction where users are able to move and perform interaction in 3D space. Both human and machine process information where the physical position of elements in the 3D space is relevant.

<span class="mw-page-title-main">Input/output</span> Communication between an information processing system and the outside world

In computing, input/output is the communication between an information processing system, such as a computer, and the outside world, such as another computer system, peripherals, or a human operator. Inputs are the signals or data received by the system and outputs are the signals or data sent from it. The term can also be used as part of an action; to "perform I/O" is to perform an input or output operation.

<span class="mw-page-title-main">Human–computer interaction</span> Academic discipline studying the relationship between computer systems and their users

Human–computer interaction (HCI) is research in the design and the use of computer technology, which focuses on the interfaces between people (users) and computers. HCI researchers observe the ways humans interact with computers and design technologies that allow humans to interact with computers in novel ways. A device that allows interaction between human being and a computer is known as a "Human-computer Interface (HCI)".

References

  1. 1 2 J.D. Foley, A. van Dam, S.K. Feiner and J.F. Hughes (1990), Computer Graphics: Principles and Practice, Addison–Wesley.
  2. A.B. Tucker (2004), Computer Science Handbook, Second Edition. Chapman & Hall/CRC. pp 20–2.
  3. Sedig, K., Parsons, P., Dittmer, M., & Haworth, R. (2013). Human–centered interactivity of visualization tools: Micro– and macro–level considerations. In W. Huang (Ed.), Handbook of Human-Centric Visualization (pp. 717–743). Springer, New York.
  4. 1 2 Sedig, K. & Parsons, P. (2013). Interaction design for complex cognitive activities with visual representations: A pattern-based approach. AIS Transactions on Human-Computer Interaction, 5(2), 84–133.
  5. 1 2 M. Beaudouin-Lafon (2000) Instrumental interaction: an interaction model for designing post-WIMP user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
  6. P. Dragicevic and J-D Fekete (2004) The Input Configurator toolkit: towards high input adaptability in interactive applications [ dead link ]. In Proceedings of the Working Conference on Advanced Visual interfaces.
  7. 1 2 W. Buxton (1986) There's More to Interaction than Meets the Eye: Some Issues in Manual Input. In Norman, D. A. and Draper, S. W. (Eds.), User Centered System Design: New Perspectives on Human–Computer Interaction. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 319–337.
  8. Schyn, A., Navarre, D., Palanque, P., and Porcher Nedel, L. 2003. Formal description of a multimodal interaction technique in an immersive virtual reality application. In Proceedings of the 15th French-Speaking Conference on Human–Computer interaction on 15eme Conference Francophone Sur L'interaction Homme–Machine (Caen, France, November 25–28, 2003). T. Baudel, Ed. IHM 2003, vol. 51. ACM, New York, NY, 150–157.