Intrabeam scattering

Last updated

Intrabeam scattering (IBS) is an effect in accelerator physics where collisions between particles couple the beam emittance in all three dimensions. This generally causes the beam size to grow. In proton accelerators, intrabeam scattering causes the beam to grow slowly over a period of several hours. This limits the luminosity lifetime. In circular lepton accelerators, intrabeam scattering is counteracted by radiation damping, resulting in a new equilibrium beam emittance with a relaxation time on the order of milliseconds. Intrabeam scattering creates an inverse relationship between the smallness of the beam and the number of particles it contains, therefore limiting luminosity.

Contents

The two principal methods for calculating the effects of intrabeam scattering were done by Anton Piwinski in 1974 [1] and James Bjorken and Sekazi Mtingwa in 1983. [2] The Bjorken-Mtingwa formulation is regarded as being the most general solution. Both of these methods are computationally intensive. Several approximations of these methods have been done that are easier to evaluate, but less general. These approximations are summarized in Intrabeam scattering formulas for high energy beams by K. Kubo et al. [3]

Intrabeam scattering rates have a dependence. This means that its effects diminish with increasing beam energy. Other ways of mitigating IBS effects are the use of wigglers, and reducing beam intensity. Transverse intrabeam scattering rates are sensitive to dispersion.

Intrabeam scattering is closely related to the Touschek effect. The Touschek effect is a lifetime based on intrabeam collisions that result in both particles being ejected from the beam. Intrabeam scattering is a risetime based on intrabeam collisions that result in momentum coupling.

Bjorken–Mtingwa formulation

The betatron growth rates for intrabeam scattering are defined as,

,
,
.

The following is general to all bunched beams,

,

where , , and are the momentum spread, horizontal, and vertical are the betatron growth times. The angle brackets <...> indicate that the integral is averaged around the ring.

Definitions:

is the classical radius of the particle
is the speed of light
is the number of particles per bunch
is velocity divided by the speed of light
is energy divided by mass
and is the betatron function and its derivative, respectively
and is the dispersion function and its derivative, respectively
is the emittance
is the bunch length
is the momentum spread
and are the minimum and maximum impact parameters. The minimum impact parameter is the closest distance of approach between two particles in a collision. The maximum impact parameter is the largest distance between two particles such that their trajectories are unaltered by the collision. The maximum impact parameter should be taken to be the minimum beam size. See [4] [5] for some analysis of the Coulomb log and support for this result.
is the minimum scattering angle.

Equilibrium and growth rate sum rule

IBS can be seen as a process in which the different "temperatures" try to equilibrate. The growth rates would be zero in the case that

which the factor of coming from the Lorentz transformation. From this equation, we see that due to the factor of , the longitudinal is typically much "colder" than the transverse. Thus, we typically get growth in the longitudinal, and shrinking in the transverse.

One may also the express conservation of energy in IBS in terms of the Piwinski invariant

where . Above transition, with just IBS, this implies that there is no equilibrium. However, for the case of radiation damping and diffusion, there is certainly an equilibrium. The effect of IBS is to cause a change in the equilibrium values of the emittances.

Inclusion of coupling

In the case of a coupled beam, one must consider the evolution of the coupled eiqenemittances. The growth rates are generalized to

Measurement and comparison with Theory

Intrabeam scattering is an important effect in the proposed "ultimate storage ring" light sources and lepton damping rings for International Linear Collider (ILC) and Compact Linear Collider (CLIC). Experimental studies aimed at understanding intrabeam scattering in beams similar to those used in these types of machines have been conducted at KEK, [6] CesrTA, [7] and elsewhere.

Related Research Articles

In optics, polarized light can be described using the Jones calculus, discovered by R. C. Jones in 1941. Polarized light is represented by a Jones vector, and linear optical elements are represented by Jones matrices. When light crosses an optical element the resulting polarization of the emerging light is found by taking the product of the Jones matrix of the optical element and the Jones vector of the incident light. Note that Jones calculus is only applicable to light that is already fully polarized. Light which is randomly polarized, partially polarized, or incoherent must be treated using Mueller calculus.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Einstein tensor</span> Tensor used in general relativity

In differential geometry, the Einstein tensor is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum.

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

In mathematical physics, the gamma matrices, , also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra Cl1,3(). It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin-1/2 particles.

In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.

In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.

<span class="mw-page-title-main">Beam emittance</span> Property of a charged particle beam

In accelerator physics, emittance is a property of a charged particle beam. It refers to the area occupied by the beam in a position-and-momentum phase space.

<span class="mw-page-title-main">Electromagnetic stress–energy tensor</span>

In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span>

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

In mathematical physics, the Dirac algebra is the Clifford algebra . This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin-½ particles with a matrix representation of the gamma matrices, which represent the generators of the algebra.

<span class="mw-page-title-main">Errors-in-variables models</span> Regression models accounting for possible errors in independent variables

In statistics, errors-in-variables models or measurement error models are regression models that account for measurement errors in the independent variables. In contrast, standard regression models assume that those regressors have been measured exactly, or observed without error; as such, those models account only for errors in the dependent variables, or responses.

In computer networks, self-similarity is a feature of network data transfer dynamics. When modeling network data dynamics the traditional time series models, such as an autoregressive moving average model are not appropriate. This is because these models only provide a finite number of parameters in the model and thus interaction in a finite time window, but the network data usually have a long-range dependent temporal structure. A self-similar process is one way of modeling network data dynamics with such a long range correlation. This article defines and describes network data transfer dynamics in the context of a self-similar process. Properties of the process are shown and methods are given for graphing and estimating parameters modeling the self-similarity of network data.

<span class="mw-page-title-main">Calculus of moving surfaces</span> Extension of the classical tensor calculus

The calculus of moving surfaces (CMS) is an extension of the classical tensor calculus to deforming manifolds. Central to the CMS is the Tensorial Time Derivative whose original definition was put forth by Jacques Hadamard. It plays the role analogous to that of the covariant derivative on differential manifolds in that it produces a tensor when applied to a tensor.

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Centuries passed before more extensive trigonometric tables were created. One such table is the Canon Sinuum created at the end of the 16th century.

In the theory of quantum communication, an amplitude damping channel is a quantum channel that models physical processes such as spontaneous emission. A natural process by which this channel can occur is a spin chain through which a number of spin states, coupled by a time independent Hamiltonian, can be used to send a quantum state from one location to another. The resulting quantum channel ends up being identical to an amplitude damping channel, for which the quantum capacity, the classical capacity and the entanglement assisted classical capacity of the quantum channel can be evaluated.

Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor. However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.

<span class="mw-page-title-main">Dual graviton</span> Hypothetical particle found in supergravity

In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of supergravity in eleven dimensions.

<span class="mw-page-title-main">Courant–Snyder parameters</span> Set of quantities in accelerator physics

In accelerator physics, the Courant–Snyder parameters are a set of quantities used to describe the distribution of positions and velocities of the particles in a beam. When the positions along a single dimension and velocities along that dimension of every particle in a beam are plotted on a phase space diagram, an ellipse enclosing the particles can be given by the equation:

References

  1. A. Piwinski, in Proceedings of the 9th International Conference on High Energy Accelerators, Stanford, CA, 1974 (SLAC, Stanford, 1974), p. 405
  2. J. Bjorken and S. Mtingwa, Part. Accel. 13, 115 (1983) https://s3.cern.ch/inspire-prod-files-a/a7d86ec1529ba6512d446523cd88c2d5
  3. K. Kubo et al., Phys. Rev. ST Accel. Beams 8, 081001 (2005) https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.8.081001
  4. B. Nash et al., "A New analysis of intrabeam scattering", Conf.Proc. C030512 (2003) 126, http://inspirehep.net/record/623294
  5. "SLAC-R-820 -- Analytical Approach to Eigen-Emittance Evolution in Storage Rings". Archived from the original on 3 April 2013. Retrieved 20 February 2013.
  6. K. L. F. Bane, H. Hayano, K. Kubo, T. Naito, T. Okugi, and J. Urakawa, Phys. Rev. ST Accel. Beams 5, 084403 (2002). http://prst-ab.aps.org/abstract/PRSTAB/v5/i8/e084403
  7. M. P. Ehrlichman, et al., Phys. Rev. ST Accel. Beams 16, 104401 (2013). http://prst-ab.aps.org/abstract/PRSTAB/v16/i10/e104401