Radiation damping

Last updated

Radiation damping in accelerator physics is a phenomenum where betatron oscillations and longitudinal oscilations of the particle are damped due to energy loss by synchrotron radiation. It can be used to reduce the beam emittance of a high-velocity charged particle beam.

Contents

The two main ways of using radiation damping to reduce the emittance of a particle beam are the use of undulators and damping rings (often containing undulators), both relying on the same principle of inducing synchrotron radiation to reduce the particles' momentum, then replacing the momentum only in the desired direction of motion.

Damping rings

As particles are moving in a closed orbit, the lateral acceleration causes them to emit synchrotron radiation, thereby reducing the size of their momentum vectors (relative to the design orbit) without changing their orientation (ignoring quantum effects for the moment). In longitudinal direction, the loss of particle impulse due to radiation is replaced by accelerating sections (RF cavities) that are installed in the beam path so that an equilibrium is reached at the design energy of the accelerator. Since this is not happening in transverse direction, where the emittance of the beam is only increased by the quantization of radiation losses (quantum effects), the transverse equilibrium emittance of the particle beam will be smaller with large radiation losses, compared to small radiation losses.

Because high orbit curvatures (low curvature radii) increase the emission of synchrotron radiation, damping rings are often small. If long beams with many particle bunches are needed to fill a larger storage ring, the damping ring may be extended with long straight sections.

Undulators and wigglers

When faster damping is required than can be provided by the turns inherent in a damping ring, it is common to add undulator or wiggler magnets to induce more synchrotron radiation. These are devices with periodic magnetic fields that cause the particles to oscillate transversely, equivalent to many small tight turns. These operate using the same principle as damping rings and this oscillation causes the charged particles to emit synchrotron radiation.

The many small turns in an undulator have the advantage that the cone of synchrotron radiation is all in one direction, forward. This is easier to shield than the broad fan produced by a large turn.

Energy loss

The power radiated by a charged particle is given by a generalization of the Larmor formula derived by Liénard in 1898 [1] [2]

, where is the velocity of the particle, the acceleration, e the elementary charge, the vacuum permittivity, the Lorentz factor and the speed of light.

Note:

is the momentum and is the mass of the particle.

Linac and RF Cavities

In case of an acceleration parallel to the longitudinal axis ( ), the radiated power can be calculated as below

Inserting in Larmor's formula gives

Bending

In case of an acceleration perpendicular to the longitudinal axis ( )

Inserting in Larmor's formula gives (Hint: Factor and use )

Using magnetic field perpendicular to velocity


Using radius of curvature and inserting in gives

Electron

Here are some useful formulas to calculate the power radiated by an electron accelerated by a magnetic field perpendicular to the velocity and . [3]

where , is the perpendicular magnetic field, the electron mass.

Using the classical electron radius

where is the radius of curvature,

can also be derived from particle coordinates (using common 6D phase space coordinates system x,x',y,y',s,):

Note: The transverse magnetic field is often normalized using the magnet rigidity: [4]

Field expansion (using Laurent_series): where is the transverse field expressed in [T], the multipole field strengths (skew and normal) expressed in , the particle position and the multipole order, k=0 for a dipole,k=1 for a quadrupole,k=2 for a sextupole, etc...

See also

Related Research Articles

<span class="mw-page-title-main">Hydrostatic equilibrium</span> State of balance between external forces on a fluid and internal pressure gradient

In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. In general, it is what causes objects in space to be spherical.

<span class="mw-page-title-main">Synchrotron radiation</span> Electromagnetic radiation

Synchrotron radiation is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity. It is produced artificially in some types of particle accelerators or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization, and the frequencies generated can range over a large portion of the electromagnetic spectrum.

<span class="mw-page-title-main">Rankine–Hugoniot conditions</span> Concept in physics

The Rankine–Hugoniot conditions, also referred to as Rankine–Hugoniot jump conditions or Rankine–Hugoniot relations, describe the relationship between the states on both sides of a shock wave or a combustion wave in a one-dimensional flow in fluids or a one-dimensional deformation in solids. They are named in recognition of the work carried out by Scottish engineer and physicist William John Macquorn Rankine and French engineer Pierre Henri Hugoniot.

<span class="mw-page-title-main">Klein–Nishina formula</span> Electron-photon scattering cross section

In particle physics, the Klein–Nishina formula gives the differential cross section of photons scattered from a single free electron, calculated in the lowest order of quantum electrodynamics. It was first derived in 1928 by Oskar Klein and Yoshio Nishina, constituting one of the first successful applications of the Dirac equation. The formula describes both the Thomson scattering of low energy photons and the Compton scattering of high energy photons, showing that the total cross section and expected deflection angle decrease with increasing photon energy.

In physical chemistry, the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory explains the aggregation and kinetic stability of aqueous dispersions quantitatively and describes the force between charged surfaces interacting through a liquid medium. It combines the effects of the van der Waals attraction and the electrostatic repulsion due to the so-called double layer of counterions. The electrostatic part of the DLVO interaction is computed in the mean field approximation in the limit of low surface potentials - that is when the potential energy of an elementary charge on the surface is much smaller than the thermal energy scale, . For two spheres of radius each having a charge separated by a center-to-center distance in a fluid of dielectric constant containing a concentration of monovalent ions, the electrostatic potential takes the form of a screened-Coulomb or Yukawa potential,

In theoretical physics, the Rarita–Schwinger equation is the relativistic field equation of spin-3/2 fermions in a four-dimensional flat spacetime. It is similar to the Dirac equation for spin-1/2 fermions. This equation was first introduced by William Rarita and Julian Schwinger in 1941.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below.

<span class="mw-page-title-main">Larmor formula</span> Gives the total power radiated by an accelerating, nonrelativistic point charge

In electrodynamics, the Larmor formula is used to calculate the total power radiated by a nonrelativistic point charge as it accelerates. It was first derived by J. J. Larmor in 1897, in the context of the wave theory of light.

In the physics of electromagnetism, the Abraham–Lorentz force is the reaction force on an accelerating charged particle caused by the particle emitting electromagnetic radiation by self-interaction. It is also called the radiation reaction force, the radiation damping force, or the self-force. It is named after the physicists Max Abraham and Hendrik Lorentz.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In the Newman–Penrose (NP) formalism of general relativity, Weyl scalars refer to a set of five complex scalars which encode the ten independent components of the Weyl tensor of a four-dimensional spacetime.

Intrabeam scattering (IBS) is an effect in accelerator physics where collisions between particles couple the beam emittance in all three dimensions. This generally causes the beam size to grow. In proton accelerators, intrabeam scattering causes the beam to grow slowly over a period of several hours. This limits the luminosity lifetime. In circular lepton accelerators, intrabeam scattering is counteracted by radiation damping, resulting in a new equilibrium beam emittance with a relaxation time on the order of milliseconds. Intrabeam scattering creates an inverse relationship between the smallness of the beam and the number of particles it contains, therefore limiting luminosity.

In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.

Ritz ballistic theory is a theory in physics, first published in 1908 by Swiss physicist Walther Ritz. In 1908, Ritz published Recherches critiques sur l'Électrodynamique générale, a lengthy criticism of Maxwell-Lorentz electromagnetic theory, in which he contended that the theory's connection with the luminiferous aether made it "essentially inappropriate to express the comprehensive laws for the propagation of electrodynamic actions."

In the Newman–Penrose (NP) formalism of general relativity, independent components of the Ricci tensors of a four-dimensional spacetime are encoded into seven Ricci scalars which consist of three real scalars , three complex scalars and the NP curvature scalar . Physically, Ricci-NP scalars are related with the energy–momentum distribution of the spacetime due to Einstein's field equation.

Quantum excitation is the effect in circular accelerators or storage rings whereby the discreteness of photon emission causes the charged particles to undergo a random walk or diffusion process.

Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor. However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.

In plasma physics and magnetic confinement fusion, neoclassical transport or neoclassical diffusion is a theoretical description of collisional transport in toroidal plasmas, usually found in tokamaks or stellarators. It is a modification of classical diffusion adding in effects of non-uniform magnetic fields due to the toroidal geometry, which give rise to new diffusion effects.

References

  1. Fitzpatrick, Richard. Classical Electromagnetism (PDF). p. 299.
  2. Walker, R.P. CERN Accelerator School: Synchrotron radiation (PDF).
  3. http://www.slac.stanford.edu/pubs/slacreports/slac-r-121.html Archived 2015-05-11 at the Wayback Machine The Physics of Electron Storage Rings: An Introduction by Matt Sands
  4. Particle Motion in Hamiltonian Formalism (PDF). 2019.