Intramolecular aglycon delivery

Last updated

Intramolecular aglycon delivery is a synthetic strategy for the construction of glycans. This approach is generally used for the formation of difficult glycosidic linkages.

The terms glycan and polysaccharide are defined by IUPAC as synonyms meaning "compounds consisting of a large number of monosaccharides linked glycosidically". However, in practice the term glycan may also be used to refer to the carbohydrate portion of a glycoconjugate, such as a glycoprotein, glycolipid, or a proteoglycan, even if the carbohydrate is only an oligosaccharide. Glycans usually consist solely of O-glycosidic linkages of monosaccharides. For example, cellulose is a glycan composed of β-1,4-linked D-glucose, and chitin is a glycan composed of β-1,4-linked N-acetyl-D-glucosamine. Glycans can be homo- or heteropolymers of monosaccharide residues, and can be linear or branched.

In chemistry, a glycosidic bond or glycosidic linkage is a type of covalent bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate.

Contents

Introduction

Glycosylation reactions are very important reactions in carbohydrate chemistry, leading to the synthesis of oligosaccharides, preferably in a stereoselective manner. The stereoselectivity of these reactions has been shown to be affected by both the nature and the configuration of the protecting group at C-2 on the glycosyl donor ring. While 1,2-trans-glycosides (e.g. α-mannosides and β-glucosides) can be synthesised easily in the presence of a participating group (such as OAc, or NHAc) at the C-2 position in the glycosyl donor ring, 1,2-cis-glycosides are more difficult to prepare. 1,2-cis-glycosides with the α configuration (e.g. glucosides or galactosides) can often be prepared using a non-participating protecting group (such as Bn, or All) on the C-2 hydroxy group. However, 1,2-cis-glycosides with the β configuration are the most difficult to achieve, and present the greatest challenge in glycosylation reactions.

Glycosylation is the reaction in which a carbohydrate, i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule. In biology, glycosylation mainly refers in particular to the enzymatic process that attaches glycans to proteins, or other organic molecules. This enzymatic process produces one of the fundamental biopolymers found in cells. Glycosylation is a form of co-translational and post-translational modification. Glycans serve a variety of structural and functional roles in membrane and secreted proteins. The majority of proteins synthesized in the rough endoplasmic reticulum undergo glycosylation. It is an enzyme-directed site-specific process, as opposed to the non-enzymatic chemical reaction of glycation. Glycosylation is also present in the cytoplasm and nucleus as the O-GlcNAc modification. Aglycosylation is a feature of engineered antibodies to bypass glycosylation. Five classes of glycans are produced:

Carbohydrate chemistry is a subdiscipline of chemistry primarily concerned with the synthesis, structure, and function of carbohydrates. Due to the general structure of carbohydrates, their synthesis is often preoccupied with the selective formation of glycosidic linkages and the selective reaction of hydroxyl groups; as a result, it relies heavily on the use of protecting groups.

A glycosyl donor is a carbohydrate mono- or oligosaccharide that will react with a suitable glycosyl acceptor to form a new glycosidic bond. By convention, the donor is the member of this pair that contains the resulting anomeric carbon of the new glycosidic bond. The resulting reaction is referred to as a glycosylation or chemical glycosylation.

General information.gif

One of the most recent approaches to prepare 1,2-cis-β-glycosides in a stereospecific manner is termed ‘Intramolecular Aglycon Delivery’, and various methods have been developed based on this approach. [1] In this approach, the glycosyl acceptor is tethered onto the C-2-O-protecting group (X) in the first step. Upon activation of the glycosyl donor group (Y) (usually SR, OAc, or Br group) in the next step, the tethered aglycon traps the developing oxocarbenium ion at C-1, and is transferred from the same face as OH-2, forming the glycosidic bond stereospecifically. The yield of this reaction drops as the bulkiness of the alcohol increases.

A glycosyl acceptor: is any suitable nucleophile-containing molecule that will react with a glycosyl donor to form a new glycosidic bond. By convention, the acceptor is the member of this pair which did not contain the resulting anomeric carbon of the new glycosidic bond. Since the nucleophilic atom of the acceptor is typically an oxygen atom, this can be remembered using the mnemonic of the acceptor is the alcohol. A glycosyl acceptor can be a mono- or oligosaccharide that contains an available nucleophile, such as an unprotected hydroxyl.


Preparation of 1,2-cis-b-glycosyl.gif


Intramolecular Aglycon Delivery (IAD) methods

Carbon tethering

Acid-catalysed tethering to enol ethers

In this method, the glycosyl donor is protected at the C-2 position by an OAc group. The C-2-OAc protecting group is transformed into an enol ether by the Tebbe reagent (Cp2Ti=CH2), and then the glycosyl acceptor is tethered to the enol ether under acid-catalysed conditions to generate a mixed acetal. In a subsequent step, the β-mannoside is formed upon activation of the anomeric leaving group (Y), followed by work up. [2]

Enol ether

An enol ether is an alkene with an alkoxy substituent. The general structure is R2C=CR-OR with R an alkyl or an aryl group. Enol ethers and enamines are electron-rich alkenes because the heteroatom (O, N, respectively) donates electrons into the pi-bond. Enol ethers have oxonium ion character. Important enol ethers are methyl vinyl ether, ethyl vinyl ether, and 3,4-dihydropyran.

Acid catalyzed tethering.png

Iodonium tethering to enol ethers

This method is similar to the previous method in that the glycosyl donor is protected at C-2 by an OAc group, which is converted into an enol ether by the Tebbe reagent. However, in this approach, N-iodosuccinimide (NIS) is used to tether the glycosyl acceptor to the enol ether, and in a second step, activation of the anomeric leaving group leads to intramolecular delivery of the aglycon to C-1 and formation of the 1,2-cis-glycoside product. [3]

<i>N</i>-Iodosuccinimide chemical compound

N-Iodosuccinimide (NIS) is a reagent used in organic chemistry for the iodination of alkenes and as a mild oxidant.

Iodonium tethering.png

Iodonium tethering to prop-1-enyl ethers

The glycosyl donor is protected at C-2 by OAll group. The allyl group is then isomerized to a prop-1-enyl ether using a rhodium hydride generated from Wilkinson's catalyst ((PPh3)3RhCl) and butyllithium (BuLi). The resulting enol ether is then treated with NIS and the glycosyl acceptor to generate a mixed acetal. The 1,2-cis (e.g. β-mannosyl) product is formed in a final step through activation of the anomeric leaving group, delivery of the aglycon from the mixed acetal and finally hydrolytic work-up to remove the remains of the propenyl ether from O-2. [4]

Wilkinsons catalyst chemical compound

Wilkinson's catalyst, is the common name for chloridotris(triphenylphosphane)rhodium(I), a coordination complex of rhodium with the formula [RhCl(PPh3)3] (Ph = phenyl). It is a red-brown colored solid that is soluble in hydrocarbon solvents such as benzene, and more so in tetrahydrofuran or chlorinated solvents such as dichloromethane. The compound is widely used as a catalyst for hydrogenation of alkenes. It is named after chemist and Nobel Laureate, Sir Geoffrey Wilkinson, who first popularized its use.

Iodonium tethering on prop-1-enyl ethers.png

Oxidative tethering to para-methoxybenzyl (PMB) ethers

In this method, the glycosyl donor is protected at C-2 by a para-methoxybenzyl (PMB) group. The glycosyl acceptor is then tethered at the benzylic position of the PMB protecting group in the presence of 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The anomeric leaving group (Y) is then activated, and the developing oxocarbenium ion is captured by the tethered aglycon alcohol (OR) to give 1,2-cis β-glycoside product. [5]

Oxidative tathering.png

Solid-supported oxidative tethering to para-alkoxybenzyl ethers

This is a modification of the method of oxidative tethering to a para-methoxybenzyl ether. The difference here is that the para-alkoxybenzyl group is attached to a solid support; the β-mannoside product is released into the solution phase in the last step, while the by-products remain attached to the solid phase. This makes the purification of the β-glycoside easier; it is formed as the almost exclusive product. [6]

Solid-supported oxidative tathering.png

Silicon tethering

The initial step in this method involves the formation of a silyl ether at the C-2 hydroxy group of the glycosyl donor upon addition of dimethyldichlorosilane in the presence of a strong base such as butyllithium (BuLi); then the glycosyl acceptor is added to form a mixed silaketal. Activation of the anomeric leaving group in the presence of a hindered base then leads to the β-glycoside. [7]

Silicon tethering 1.png

A modified silicon-tethering method involves mixing of the glycosyl donor with the glycosyl acceptor and dimethyldichlorosilane in the presence of imidazole to give the mixed silaketal in one pot. Activation of the tethered intermediate then leads to the β-glycoside product. [8]

Silicon tethering 2.png

See also

Related Research Articles

Amino sugar monosaccharide having one alcoholic hydroxy group (commonly but not necessarily in position 2) replaced by an amino group; systematically known as x-amino-x-deoxymonosaccharides. (Glycosylamines are excluded)

In organic chemistry, an amino sugar is a sugar molecule in which a hydroxyl group has been replaced with an amine group. More than 60 amino sugars are known, with one of the most abundant being N-Acetyl-d-glucosamine, which is the main component of chitin.

An anomer is a type of geometric variation found at certain atoms in carbohydrate molecules. An epimer is a stereoisomer that differs in configuration at any single stereogenic center. An anomer is an epimer at the hemiacetal/acetal carbon in a cyclic saccharide, an atom called the anomeric carbon. The anomeric carbon is the carbon derived from the carbonyl carbon of the open-chain form of the carbohydrate molecule. Anomerization is the process of conversion of one anomer to the other. As is typical for stereoisomeric compounds, different anomers have different physical properties, melting points and specific rotations.

The Robinson annulation is a chemical reaction used in organic chemistry for ring formation. It was discovered by Robert Robinson in 1935 as a method to create a six membered ring by forming three new carbon–carbon bonds. The method uses a ketone and a methyl vinyl ketone to form an α,β-unsaturated ketone in a cyclohexane ring by a Michael addition followed by an aldol condensation. This procedure is one of the key methods to form fused ring systems.

Glycosyltransferase

Glycosyltransferases are enzymes that establish natural glycosidic linkages. They catalyze the transfer of saccharide moieties from an activated nucleotide sugar to a nucleophilic glycosyl acceptor molecule, the nucleophile of which can be oxygen- carbon-, nitrogen-, or sulfur-based.

The Koenigs–Knorr reaction in organic chemistry is the substitution reaction of a glycosyl halide with an alcohol to give a glycoside. It is one of the oldest and simplest glycosylation reactions. It is named after Wilhelm Koenigs (1851–1906), a student of von Bayer and fellow student with Hermann Emil Fischer, and Edward Knorr, a student of Koenigs.

Glycosynthase

The term Glycosynthase refers to a class of proteins that have been engineered to catalyze the formation of a glycosidic bond. Glycosynthase are derived from glycosidase enzymes, which catalyze the hydrolysis of glycosidic bonds. They were traditionally formed from retaining glycosidase by mutating the active site nucleophilic amino acid to a small non-nucleophilic amino acid. More modern approaches use directed evolution to screen for amino acid substitutions that enhance glycosynthase activity.

Glycoside hydrolase InterPro Domain

Glycoside hydrolases catalyze the hydrolysis of glycosidic bonds in complex sugars. They are extremely common enzymes with roles in nature including degradation of biomass such as cellulose (cellulase), hemicellulose, and starch (amylase), in anti-bacterial defense strategies, in pathogenesis mechanisms and in normal cellular function. Together with glycosyltransferases, glycosidases form the major catalytic machinery for the synthesis and breakage of glycosidic bonds.

The Rubottom oxidation is a useful, high-yielding chemical reaction between silyl enol ethers and peroxyacids to give the corresponding α-hydroxy carbonyl product. The mechanism of the reaction was proposed in its original disclosure by A.G. Brook with further evidence later supplied by George M. Rubottom. After a Prilezhaev-type oxidation of the silyl enol ether with the peroxyacid to form the siloxy oxirane intermediate, acid-catalyzed ring-opening yields an oxocarbenium ion. This intermediate then participates in a 1,4-silyl migration to give an α-siloxy carbonyl derivative that can be readily converted to the α-hydroxy carbonyl compound in the presence of acid, base, or a fluoride source.

Nucleotide sugars are the activated forms of monosaccharides. Nucleotide sugars act as glycosyl donors in glycosylation reactions. Those reactions are catalyzed by a group of enzymes called glycosyltransferases.

Glycorandomization, is a drug discovery and drug development technology platform to enable the rapid diversification of bioactive small molecules, drug leads and/or approved drugs through the attachment of sugars. Initially developed as a facile method to manipulate carbohydrate substitutions of naturally occurring glycosides to afford the corresponding differentially glycosylated natural product libraries, glycorandomization applications have expanded to include both small molecules and even macromolecules (proteins). Also referred to as 'glycodiversification', glycorandomization has led to the discovery of new glycoside analogs which display improvements in potency, selectivity and/or ADMET as compared to the parent molecule.

A chemical gycosylation reaction involves the coupling of a glycosyl donor, to a glycosyl acceptor forming a glycoside. If both the donor and acceptor are sugars, then the product is an oligosaccharide. The reaction requires activation with a suitable activating reagent. The reactions often result in a mixture of products due to the creation of a new stereogenic centre at the anomeric position of the glycosyl donor. The formation of a glycosidic linkage allows for the synthesis of complex polysaccharides which may play important roles in biological processes and pathogenesis and therefore having synthetic analogs of these molecules allows for further studies with respect to their biological importance.

The Ferrier carbocyclization is an organic reaction that was first reported by the carbohydrate chemist Robert J. Ferrier in 1979. It is a metal-mediated rearrangement of enol ether pyrans to cyclohexanones. Typically, this reaction is catalyzed by mercury salts, specifically mercury(II) chloride.

Armed and disarmed saccharides

The armed/disarmed approach to glycosylation is an effective way to prevent sugar molecules from self-glycosylation when synthesizing disaccharides. This approach was first recognized when acetylated sugars only acted as glycosyl acceptors when reacted with benzylated sugars. The acetylated sugars were termed “disarmed” while the benzylated sugars were termed “armed”.

The Crich β-mannosylation is a synthetic strategy which is used in carbohydrate synthesis to generate a 1,2-cis-glycosidic bond. This type of linkate is generally very difficult to make, and specific methods like the Crich β-mannosylation are used to overcome these issues.

Carbohydrate synthesis is a sub-field of organic chemistry concerned specifically with the generation of natural and unnatural carbohydrate structures. This can include the synthesis of monosaccharide residues or structures containing more than one monosaccharide, known as oligosaccharides.

Carbonyl oxidation with hypervalent iodine reagents involves the functionalization of the α position of carbonyl compounds through the intermediacy of a hypervalent iodine(III) enolate species. This electrophilic intermediate may be attacked by a variety of nucleophiles or undergo rearrangement or elimination.

The Saegusa–Ito oxidation is a chemical reaction used in organic chemistry. It was discovered in 1978 by Takeo Saegusa and Yoshihiko Ito as a method to introduce α-β unsaturation in carbonyl compounds. The reaction as originally reported involved formation of a silyl enol ether followed by treatment with palladium(II) acetate and benzoquinone to yield the corresponding enone. The original publication noted its utility for regeneration of unsaturation following 1,4-addition with nucleophiles such as organocuprates.

Trichloroacetonitrile chemical compound

Trichloroacetonitrile is an organic compound with the formula CCl3CN. It is a colourless liquid, although commercial samples often are brownish. It is used commercially as a precursor to the fungicide etridiazole. It is prepared by dehydration of trichloroacetamide. As a bifunctional compound, trichloroacetonitrile can react at both the trichloromethyl and the nitrile group. The electron withdrawing effect of the trichloromethyl group activates the nitrile group for nucleophilic additions. The high reactivity makes trichloroacetonitrile a versatile reagent, but also causes its susceptibility towards hydrolysis.

References

  1. Cumpstey, I. Carbohydr. Res.2008, 343, 1553–1573
  2. Barresi, F.; Hindsgaul, O. J. Am. Chem. Soc.1991, 113, 9376–9377
  3. Ennis, S. C.; Fairbanks, A. J.; Slinn, C. A.; Tennant-Eyles, R. J.; Yeates, H. S. Tetrahedron2001, 57, 4221–4230
  4. Seward, C. M. P.; Cumpstey, I.; Aloui, M.; Ennis, S. C.; Redgrave, A. J.; Fairbanks, A. J. Chem. Commun.2000, 1409–1410
  5. Ito, Y.; Ogawa, T. Angew. Chem. Int. Ed. Engl.1994, 33, 1765–1767
  6. Ito, Y.; Ogawa, T. J. Am. Chem. Soc.1997, 119, 5562–5566
  7. Stork, G.; Kim, G. J. Am. Chem. Soc.1992, 114, 1087-1088
  8. Stork, G.; La Clair, J. J. J. Am. Chem. Soc.1996, 118, 247–248