Inverted ligand field theory (ILFT) describes a phenomenon in the bonding of coordination complexes where the lowest unoccupied molecular orbital is primarily of ligand character. [2] [1] This is contrary to the traditional ligand field theory or crystal field theory picture and arises from the breaking down of the assumption that in organometallic complexes, ligands are more electronegative and have frontier orbitals below those of the d orbitals of electropositive metals. [3] [4] Towards the right of the d-block, when approaching the transition-metal–main group boundary, the d orbitals become more core-like, making their cations more electronegative. This decreases their energies and eventually arrives at a point where they are lower in energy than the ligand frontier orbitals. [2] Here the ligand field inverts so that the bonding orbitals are more metal-based, and antibonding orbitals more ligand-based. The relative arrangement of the d orbitals are also inverted in complexes displaying this inverted ligand field. [2]
The first example of an inverted ligand field was demonstrated in paper form 1995 by James Snyder. [5] In this theoretical paper, Snyder proposed that the [Cu(CF3)4]- complexes reported by Naumann et al. and assigned a formal oxidation state of 3+ at the copper [6] would be better thought of as Cu(I). By comparing the d-orbital occupation, calculated charges and orbital population of [Cu(CF3)4]- "Cu(III)" complex and the formally Cu(I) [Cu(CH3)2]- complex, they illustrated how the former could be better described as a d10 copper complex experiencing two electron donation from the CF3- ligands. [5] The phenomenon, termed an inverted ligand field by Roald Hoffman, began to be described by Aullón and Alvarez as they identified this phenonmenon as being a result of relative electronegativities. [7] Lancaster and co-workers later provided experimental evidence to support the assignment of this oxidation state. Using UV/visible/near IR spectroscopy, Cu K-edge X-ray absorption spectroscopy, and 1s2p resonant inelastic X-ray scattering in concert with density functional theory, multiplet theory, and multireference calculations, they were able to map the ground state electronic configuration. This showed that the lowest unoccupied orbital was of primarily trifluoromethyl character. This confirmed the presence of an inverted ligand field and started building experimental tools to probe this phenomenon. [8] Since the Snyder case, many other complexes of later transition metals have been shown to display inverted ligand field through both theoretical and experimental methods.
Computational and experimental techniques have been imperative for the study of inverted ligand fields, especially when used in cooperatively.
Computational methods have played a large role in understanding the nature of bonding in both molecular and solid-state systems displaying inverted ligand fields. The Hoffman group has completed many calculations to probe occurrence of inverted ligand fields in varying systems. [9] In a study of the absorption of CO on PtBi and PtBi2 surfaces, on an octahedral [Pt(BiH3)6]4+ model with a Pt thought of having a formal 4+ oxidation state, the team found that the t2g metal orbitals were higher energy that the eg orbitals. This inversion of the d orbital ordering was attributed to the bismuth based ligands being higher in energy than the metal d orbitals. [10] In another study involving calculations on Ag(III) salt KAgF4, other Ag(II), and Ag(III) compounds, the Ag d orbitals were found to be below those of the fluoride ligand orbitals, [11] and was confirmed by Grochala and cowrokers by core and valence spectroscopies. [12]
The Mealli group developed the program Computer Aided Composition of Atomic Orbitals (CACAO) to provide visualised molecular orbitals analyses based on perturbation theory principles. [13] This program successfully displayed orbital energy inversion with organometallic complexes containing electronegative metals such as Ni or Cu bound to electropositive ligand atoms such as B, Si, or Sn. [13] In these cases the bonding was described as a ligand to metal dative bond or sigma backdonation. [14]
Alvarez and coworkers used computational methods to illustrate ligand field inversion in the band structures of solid state materials. The group found that, contrary to the classical bonding scheme, in calculated MoNiP8 band structures the eg-type orbitals of the octahedral nickel atom were found to be the major component of an occupied band below the t2g set. [16] Additionally, the band around the fermi level which included the Ni+ antibonding orbitals were found to be mostly of phosphorus character, a clear example if an inverted ligand field. Similar observations were made in other solid state materials like the skutterudite CoP3 structure. [17] [15] A consequence of the inverted ligand field in this case is that the conductivity in skutterudites is associated with the phosphorus rings rather than the metal atoms.
X-ray absorption spectroscopy (XAS) has been a powerful tool in deducing the oxidation states of transition metals. [18] Energy shifts in XAS are higher due to the higher effective nuclear charge of atoms in higher oxidations, presumably due to the higher binding energy for deeper, more core-like electrons. [2]
Despite this being a very powerful technique, competing effects on the rising edge positions can make assignment difficult. It was initially thought that the weak, quadrupole-allowed pre-edge peak assigned as the Cu 1s to 3d transition could be used to distinguish between Cu(II) and Cu(III) with the features appearing at 8979 +/- 0.3 eV and 8981 +/- 0.5 eV, respectively. [19] Ab initio calculations by Tomson, Wieghardt, and co-workers displayed that pre-peaks previously assigned as Cu(III) could be displayed by Cu(II) bearing complexes. [20] Many groups have displayed that metal K-edge XAS transitions involving ligand-localised acceptor orbitals, as well as spectral shifts from change in coordination environment, can make metal K-edge analysis less predictable. [21] [22] [23] [24]
The most sussessful use of K and L-edge XAS provide valuable information on the composition of molecular orbitals and display inverted ligand fields has been done in studies that made use of computational techniques in concert with experimental techniques. This was the case of the L2[Cu2(S2)n]2+ complexes of York, Brown, and Tolman, [25] and the Cu(CF3)4- by various groups including Hoffman, [2] Overgaard, [26] and Lancaster. [1] [8]
Another experimental tool used to probe ligand field inversion includes Electron paramagnetic resonance (ESR/EPR), which can provide information regarding the metal electronic configuration, the nature of the SOMO, and high resolution information on the ligands. [27]
Changes in both charge and geometry of organometallic complexes can greatly vary the energies of molecular orbitals and can therefore dictate the likelihood of observing an inverted ligand field. Hoffman and coworkers explored the impact of these variables by calculating the atomic composition of molecular orbitals for mono- di- and trianion copper complexes. [2] The square planar monoanion displayed the reported ligand field inversion. The "Cu(II)" which has an intermediate square planar to tetrahedral geometry also displayed this feature with the antibonding t2-derived orbital being mostly of ligand character and the x2-y2 orbital being the lowest molecular orbital of the d block. The tetrahedral trianion showed a return to the Werner-type ligand field. [2] By modulating the geometry of the "Cu(II)" species and displaying the change in energies of MO on walsh diagrams, the group was able to show how the complex could display both a classical and inverted ligand field when in Td and SP geometry respectively. [2] Additional calculations on the Cu(I) with non-tetrahedral geometry also displayed an inverted ligand field. This indicated the importance of not just oxidation state but geometry in determining the inversion of a ligand field.
The inversion of ligand fields has interesting implications on the nature of reactivity of organometallic complexes. This sigma non-innocence of ligands arising from inverted ligand fields could therefore be used to tune reactivity of complexes and open space in understanding the mechanisms of existing reactions.
In an analysis of the [ZnF4]2- , it was found that due to ligand field inversion displayed in this species, core ionization removes an electron from the metal-rich bonding t2 orbital, lengthening the Zn-F bonds. This is contrary to the classical ligand field where ionization would remove an electron from the antibonding t2 orbital shortening the Zn-F bonds. [2]
The presence of electron-deficient ligands also result in an inverted ligand field. Calculations have shown that the large O 2p contribution into the LUMO/LUMO+1 in [(LTEEDCu)2(O2)]2+ should make the complex highly oxidizing as it contains electron deficient O2- ligands. [1] Studies have corroborated this property as this complex has shown to be able to undergo C-H and C-F activation and aromatic hydroxylation. [28] [29] [30]
There is evidence showing that reductive elimination on species displaying ligand field inversion do not undergo a redox event at the metal center. The C-CF3 bond formation by "Ni(IV)" complexes [31] was completed without redox participation of the Nickel. [32] The metal appears to remain Ni(II) throughout the reaction. The mechanism is thought to be through the attack of a masked electrophilic cation by anionic CF3. The electron deficiency here is due to the inverted ligand field. [32]
In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to other atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. Beside nearly-pure ionic bonding, many covalent bonds exhibit a strong ionicity, making oxidation state a useful predictor of charge.
Plastocyanin is a copper-containing protein that mediates electron-transfer. It is found in a variety of plants, where it participates in photosynthesis. The protein is a prototype of the blue copper proteins, a family of intensely blue-colored metalloproteins. Specifically, it falls into the group of small type I blue copper proteins called "cupredoxins".
In chemistry, π backbonding is a π-bonding interaction between a filled (or half filled) orbital of a transition metal atom and a vacant orbital on an adjacent ion or molecule. In this type of interaction, electrons from the metal are used to bond to the ligand, which dissipates excess negative charge and stabilizes the metal. It is common in transition metals with low oxidation states that have ligands such as carbon monoxide, olefins, or phosphines. The ligands involved in π backbonding can be broken into three groups: carbonyls and nitrogen analogs, alkenes and alkynes, and phosphines. Compounds where π backbonding is prominent include Ni(CO)4, Zeise's salt, and molybdenum and iron dinitrogen complexes.
Reductive elimination is an elementary step in organometallic chemistry in which the oxidation state of the metal center decreases while forming a new covalent bond between two ligands. It is the microscopic reverse of oxidative addition, and is often the product-forming step in many catalytic processes. Since oxidative addition and reductive elimination are reverse reactions, the same mechanisms apply for both processes, and the product equilibrium depends on the thermodynamics of both directions.
Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.
Dithiolene metal complexes are complexes containing 1,2-dithiolene ligands. 1,2-Dithiolene ligands, a particular case of 1,2-dichalcogenolene species along with 1,2-diselenolene derivatives, are unsaturated bidentate ligand wherein the two donor atoms are sulfur. 1,2-Dithiolene metal complexes are often referred to as "metal dithiolenes", "metallodithiolenes" or "dithiolene complexes". Most molybdenum- and tungsten-containing proteins have dithiolene-like moieties at their active sites, which feature the so-called molybdopterin cofactor bound to the Mo or W.
Copper proteins are proteins that contain one or more copper ions as prosthetic groups. Copper proteins are found in all forms of air-breathing life. These proteins are usually associated with electron-transfer with or without the involvement of oxygen (O2). Some organisms even use copper proteins to carry oxygen instead of iron proteins. A prominent copper protein in humans is in cytochrome c oxidase (cco). This enzyme cco mediates the controlled combustion that produces ATP. Other copper proteins include some superoxide dismutases used in defense against free radicals, peptidyl-α-monooxygenase for the production of hormones, and tyrosinase, which affects skin pigmentation.
The 18-electron rule is a chemical rule of thumb used primarily for predicting and rationalizing formulas for stable transition metal complexes, especially organometallic compounds. The rule is based on the fact that the valence orbitals in the electron configuration of transition metals consist of five (n−1)d orbitals, one ns orbital, and three np orbitals, where n is the principal quantum number. These orbitals can collectively accommodate 18 electrons as either bonding or non-bonding electron pairs. This means that the combination of these nine atomic orbitals with ligand orbitals creates nine molecular orbitals that are either metal-ligand bonding or non-bonding. When a metal complex has 18 valence electrons, it is said to have achieved the same electron configuration as the noble gas in the period, lending stability to the complex. Transition metal complexes that deviate from the rule are often interesting or useful because they tend to be more reactive. The rule is not helpful for complexes of metals that are not transition metals. The rule was first proposed by American chemist Irving Langmuir in 1921.
Metal nitrosyl complexes are complexes that contain nitric oxide, NO, bonded to a transition metal. Many kinds of nitrosyl complexes are known, which vary both in structure and coligand.
In chemistry, a (redox) non-innocent ligand is a ligand in a metal complex where the oxidation state is not clear. Typically, complexes containing non-innocent ligands are redox active at mild potentials. The concept assumes that redox reactions in metal complexes are either metal or ligand localized, which is a simplification, albeit a useful one.
In X-ray absorption spectroscopy, the K-edge is a sudden increase in x-ray absorption occurring when the energy of the X-rays is just above the binding energy of the innermost electron shell of the atoms interacting with the photons. The term is based on X-ray notation, where the innermost electron shell is known as the K-shell. Physically, this sudden increase in attenuation is caused by the photoelectric absorption of the photons. For this interaction to occur, the photons must have more energy than the binding energy of the K-shell electrons (K-edge). A photon having an energy just above the binding energy of the electron is therefore more likely to be absorbed than a photon having an energy just below this binding energy or significantly above it.
Metal L-edge spectroscopy is a spectroscopic technique used to study the electronic structures of transition metal atoms and complexes. This method measures X-ray absorption caused by the excitation of a metal 2p electron to unfilled d orbitals, which creates a characteristic absorption peak called the L-edge. Similar features can also be studied by Electron Energy Loss Spectroscopy. According to the selection rules, the transition is formally electric-dipole allowed, which not only makes it more intense than an electric-dipole forbidden metal K pre-edge transition, but also makes it more feature-rich as the lower required energy results in a higher-resolution experiment.
Transition metal carbyne complexes are organometallic compounds with a triple bond between carbon and the transition metal. This triple bond consists of a σ-bond and two π-bonds. The HOMO of the carbyne ligand interacts with the LUMO of the metal to create the σ-bond. The two π-bonds are formed when the two HOMO orbitals of the metal back-donate to the LUMO of the carbyne. They are also called metal alkylidynes—the carbon is a carbyne ligand. Such compounds are useful in organic synthesis of alkynes and nitriles. They have been the focus on much fundamental research.
Metal carbon dioxide complexes are coordination complexes that contain carbon dioxide ligands. Aside from the fundamental interest in the coordination chemistry of simple molecules, studies in this field are motivated by the possibility that transition metals might catalyze useful transformations of CO2. This research is relevant both to organic synthesis and to the production of "solar fuels" that would avoid the use of petroleum-based fuels.
A metal-phosphine complex is a coordination complex containing one or more phosphine ligands. Almost always, the phosphine is an organophosphine of the type R3P (R = alkyl, aryl). Metal phosphine complexes are useful in homogeneous catalysis. Prominent examples of metal phosphine complexes include Wilkinson's catalyst (Rh(PPh3)3Cl), Grubbs' catalyst, and tetrakis(triphenylphosphine)palladium(0).
Transition metal nitrile complexes are coordination compounds containing nitrile ligands. Because nitriles are weakly basic, the nitrile ligands in these complexes are often labile.
Heterobimetallic catalysis is an approach to catalysis that employs two different metals to promote a chemical reaction. Included in this definition are cases where: 1) each metal activates a different substrate, 2) both metals interact with the same substrate, and 3) only one metal directly interacts with the substrate(s), while the second metal interacts with the first.
Nontrigonal pnictogen compounds refer to tricoordinate trivalent pnictogen compounds that are not of typical trigonal pyramidal molecular geometry. By virtue of their geometric constraint, these compounds exhibit distinct electronic structures and reactivities, which bestow on them potential to provide unique nonmetal platforms for bond cleavage reactions.
Hexaphosphabenzene is a valence isoelectronic analogue of benzene and is expected to have a similar planar structure due to resonance stabilization and its sp2 nature. Although several other allotropes of phosphorus are stable, no evidence for the existence of P6 has been reported. Preliminary ab initio calculations on the trimerisation of P2 leading to the formation of the cyclic P6 were performed, and it was predicted that hexaphosphabenzene would decompose to free P2 with an energy barrier of 13−15.4 kcal mol−1, and would therefore not be observed in the uncomplexed state under normal experimental conditions. The presence of an added solvent, such as ethanol, might lead to the formation of intermolecular hydrogen bonds which may block the destabilizing interaction between phosphorus lone pairs and consequently stabilize P6. The moderate barrier suggests that hexaphosphabenzene could be synthesized from a [2+2+2] cycloaddition of three P2 molecules. Currently, this is a synthetic endeavour which remains to be conquered.
Sigma non-innocence is a special form of non-innocence, an oxidation characteristic in metal complexes. It is mainly discussed in coordination complexes of late transition metals in their high formal oxidation states. Complexes exhibiting sigma non-innocence differ from classical Werner coordination complexes in that their bonding and antibonding orbitals have an inverted distribution of metal and ligand character. The oxidation of the ligand and a lowered charge at the metal center renders the assignment of the oxidation state non-trivial.
{{cite book}}
: CS1 maint: location missing publisher (link){{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: |last1=
has generic name (help){{cite journal}}
: |last5=
has generic name (help)