Isbell's zigzag theorem

Last updated

Isbell's zigzag theorem, a theorem of abstract algebra characterizing the notion of a dominion, was introduced by American mathematician John R. Isbell in 1966. [1] Dominion is a concept in semigroup theory, within the study of the properties of epimorphisms. For example, let U is a subsemigroup of S containing U, the inclusion map is an epimorphism if and only if , furthermore, a map is an epimorphism if and only if . [2] The categories of rings and semigroups are examples of categories with non-surjective epimorphism, and the Zig-zag theorem gives necessary and sufficient conditions for determining whether or not a given morphism is epi. [3] Proofs of this theorem are topological in nature, beginning with Isbell (1966) for semigroups, and continuing by Philip (1974), completing Isbell's original proof. [3] [4] [5] The pure algebraic proofs were given by Howie (1976) and Storrer (1976). [3] [4] [note 1]

Contents

Statement

Zig-zag

The dashed line is the spine of the zig-zag. Zigzag theorem 2.svg
The dashed line is the spine of the zig-zag.

Zig-zag: [7] [2] [8] [9] [10] [note 2] If U is a submonoid of a monoid (or a subsemigroup of a semigroup) S, then a system of equalities;

in which and , is called a zig-zag of length m in S over U with value d. By the spine of the zig-zag we mean the ordered (2m + 1)-tuple .

Dominion

Dominion: [5] [6] Let U be a submonoid of a monoid (or a subsemigroup of a semigroup) S. The dominion is the set of all elements such that, for all homomorphisms coinciding on U, .

We call a subsemigroup U of a semigroup U closed if , and dense if . [2] [12]

Isbell's zigzag theorem

Isbell's zigzag theorem: [13]

If U is a submonoid of a monoid S then if and only if either or there exists a zig-zag in S over U with value d that is, there is a sequence of factorizations of d of the form

This statement also holds for semigroups. [7] [14] [9] [4] [10]

For monoids, this theorem can be written more concisely: [15] [2] [16]

Let S be a monoid, let U be a submonoid of S, and let . Then if and only if in the tensor product .

Application

A proof sketch for example of non-surjective epimorphism in the category of rings by using zig-zag

We show that: Let to be ring homomorphisms, and , . When for all , then for all .

as required.

See also

Related Research Articles

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

<span class="mw-page-title-main">Monoid</span> Algebraic structure with an associative operation and an identity element

In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.

<span class="mw-page-title-main">Semigroup</span> Algebraic structure consisting of a set with an associative binary operation

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.

In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.

In mathematics and computer science, the Krohn–Rhodes theory is an approach to the study of finite semigroups and automata that seeks to decompose them in terms of elementary components. These components correspond to finite aperiodic semigroups and finite simple groups that are combined in a feedback-free manner.

In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element. The free monoid on a set A is usually denoted A. The free semigroup on A is the subsemigroup of A containing all elements except the empty string. It is usually denoted A+.

In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras, and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.

In algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup is associated with the composite of the two corresponding transformations. The terminology conveys the idea that the elements of the semigroup are acting as transformations of the set. From an algebraic perspective, a semigroup action is a generalization of the notion of a group action in group theory. From the computer science point of view, semigroup actions are closely related to automata: the set models the state of the automaton and the action models transformations of that state in response to inputs.

In mathematics, Green's relations are five equivalence relations that characterise the elements of a semigroup in terms of the principal ideals they generate. The relations are named for James Alexander Green, who introduced them in a paper of 1951. John Mackintosh Howie, a prominent semigroup theorist, described this work as "so all-pervading that, on encountering a new semigroup, almost the first question one asks is 'What are the Green relations like?'". The relations are useful for understanding the nature of divisibility in a semigroup; they are also valid for groups, but in this case tell us nothing useful, because groups always have divisibility.

In group theory, an inverse semigroupS is a semigroup in which every element x in S has a unique inversey in S in the sense that x = xyx and y = yxy, i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries.

In algebra, a presentation of a monoid is a description of a monoid in terms of a set Σ of generators and a set of relations on the free monoid Σ generated by Σ. The monoid is then presented as the quotient of the free monoid by these relations. This is an analogue of a group presentation in group theory.

In mathematics, a regular semigroup is a semigroup S in which every element is regular, i.e., for each element a in S there exists an element x in S such that axa = a. Regular semigroups are one of the most-studied classes of semigroups, and their structure is particularly amenable to study via Green's relations.

In mathematics, an automatic semigroup is a finitely generated semigroup equipped with several regular languages over an alphabet representing a generating set. One of these languages determines "canonical forms" for the elements of the semigroup, the other languages determine if two canonical forms represent elements that differ by multiplication by a generator.

<span class="mw-page-title-main">Monogenic semigroup</span>

In mathematics, a monogenic semigroup is a semigroup generated by a single element. Monogenic semigroups are also called cyclic semigroups.

In algebra, a transformation semigroup is a collection of transformations that is closed under function composition. If it includes the identity function, it is a monoid, called a transformationmonoid. This is the semigroup analogue of a permutation group.

In mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse. It is thus not a surprise that any group is a semigroup with involution. However, there are significant natural examples of semigroups with involution that are not groups.

In mathematics, a null semigroup is a semigroup with an absorbing element, called zero, in which the product of any two elements is zero. If every element of a semigroup is a left zero then the semigroup is called a left zero semigroup; a right zero semigroup is defined analogously.

In abstract algebra, an epigroup is a semigroup in which every element has a power that belongs to a subgroup. Formally, for all x in a semigroup S, there exists a positive integer n and a subgroup G of S such that xn belongs to G.

In mathematics, and more precisely in semigroup theory, a variety of finite semigroups is a class of semigroups having some nice algebraic properties. Those classes can be defined in two distinct ways, using either algebraic notions or topological notions. Varieties of finite monoids, varieties of finite ordered semigroups and varieties of finite ordered monoids are defined similarly.

In mathematics, and more precisely in semigroup theory, a nilsemigroup or nilpotent semigroup is a semigroup whose every element is nilpotent.

References

Citations

Bibliography

Further reading

Footnote

  1. These pure algebraic proofs were based on the tensor product characterization of the dominant elements for monoid by Stenström (1971). [6] [4]
  2. See Hoffman [5] or Mitchell [11] for commutative diagram.
  3. Some results were corrected in Isbell (1969).