The Jarzynski equality (JE) is an equation in statistical mechanics that relates free energy differences between two states and the irreversible work along an ensemble of trajectories joining the same states. It is named after the physicist Christopher Jarzynski (then at the University of Washington and Los Alamos National Laboratory, currently at the University of Maryland) who derived it in 1996. [1] [2] Fundamentally, the Jarzynski equality points to the fact that the fluctuations in the work satisfy certain constraints separately from the average value of the work that occurs in some process.
In thermodynamics, the free energy difference between two states A and B is connected to the work W done on the system through the inequality:
with equality holding only in the case of a quasistatic process, i.e. when one takes the system from A to B infinitely slowly (such that all intermediate states are in thermodynamic equilibrium). In contrast to the thermodynamic statement above, the JE remains valid no matter how fast the process happens. The JE states:
Here k is the Boltzmann constant and T is the temperature of the system in the equilibrium state A or, equivalently, the temperature of the heat reservoir with which the system was thermalized before the process took place.
The over-line indicates an average over all possible realizations of an external process that takes the system from the equilibrium state A to a new, generally nonequilibrium state under the same external conditions as that of the equilibrium state B. This average over possible realizations is an average over different possible fluctuations that could occur during the process (due to Brownian motion, for example), each of which will cause a slightly different value for the work done on the system. In the limit of an infinitely slow process, the work W performed on the system in each realization is numerically the same, so the average becomes irrelevant and the Jarzynski equality reduces to the thermodynamic equality (see above). Away from the infinitely slow limit, the average value of the work obeys while the distribution of the fluctuations in the work are further constrained such that In this general case, W depends upon the specific initial microstate of the system, though its average can still be related to through an application of Jensen's inequality in the JE, viz.
in accordance with the second law of thermodynamics.
The Jarzynski equality holds when the initial state is a Boltzmann distribution (e.g. the system is in equilibrium) and the system and environment can be described by a large number of degrees of freedom evolving under arbitrary Hamiltonian dynamics. The final state does not need to be in equilibrium. (For example, in the textbook case of a gas compressed by a piston, the gas is equilibrated at piston position A and compressed to piston position B; in the Jarzynski equality, the final state of the gas does not need to be equilibrated at this new piston position).
Since its original derivation, the Jarzynski equality has been verified in a variety of contexts, ranging from experiments with biomolecules to numerical simulations. [3] The Crooks fluctuation theorem, proved two years later, leads immediately to the Jarzynski equality. Many other theoretical derivations have also appeared, lending further confidence to its generality.
Taking the log of , and use the cumulant expansion up to the second cumulant, we obtain . The left side is the work dissipated into the heat bath, and the right side could be interpreted as the fluctuation in the work due to thermal noise.
Consider dragging an overdamped particle in a viscous fluid with temperature at constant force for a time . Because there is no potential energy for the particle, the change in free energy is zero, so we obtain .
The work expended is , where is the total displacement during the time. The particle's displacement has a mean part due to the external dragging, and a varying part due to its own diffusion, so , where is the diffusion coefficient. Together, we obtain
or , where is the viscosity. This is the fluctuation-dissipation theorem. [4]
In fact, for most trajectories, the work is positive, but for some rare trajectories, the work is negative, and those contribute enormously to the expectation, giving us an expectation that is exactly one.
A question has been raised about who gave the earliest statement of the Jarzynski equality. For example, in 1977 the Russian physicists G.N. Bochkov and Yu. E. Kuzovlev (see Bibliography) proposed a generalized version of the fluctuation-dissipation theorem which holds in the presence of arbitrary external time-dependent forces. Despite its close similarity to the JE, the Bochkov-Kuzovlev result does not relate free energy differences to work measurements, as discussed by Jarzynski himself in 2007. [1] [2]
Another similar statement to the Jarzynski equality is the nonequilibrium partition identity, which can be traced back to Yamada and Kawasaki. (The Nonequilibrium Partition Identity is the Jarzynski equality applied to two systems whose free energy difference is zero - like straining a fluid.) However, these early statements are very limited in their application. Both Bochkov and Kuzovlev as well as Yamada and Kawasaki consider a deterministic time reversible Hamiltonian system. As Kawasaki himself noted this precludes any treatment of nonequilibrium steady states. The fact that these nonequilibrium systems heat up forever because of the lack of any thermostatting mechanism leads to divergent integrals etc. No purely Hamiltonian description is capable of treating the experiments carried out to verify the Crooks fluctuation theorem, Jarzynski equality and the fluctuation theorem. These experiments involve thermostatted systems in contact with heat baths.
The second law of thermodynamics is a physical law based on universal empirical observation concerning heat and energy interconversions. A simple statement of the law is that heat always flows spontaneously from hotter to colder regions of matter. Another statement is: "Not all heat can be converted into work in a cyclic process."
In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.
Johnson–Nyquist noise is the electronic noise generated by the thermal agitation of the charge carriers inside an electrical conductor at equilibrium, which happens regardless of any applied voltage. Thermal noise is present in all electrical circuits, and in sensitive electronic equipment can drown out weak signals, and can be the limiting factor on sensitivity of electrical measuring instruments. Thermal noise increases with temperature. Some sensitive electronic equipment such as radio telescope receivers are cooled to cryogenic temperatures to reduce thermal noise in their circuits. The generic, statistical physical derivation of this noise is called the fluctuation-dissipation theorem, where generalized impedance or generalized susceptibility is used to characterize the medium.
The fluctuation theorem (FT), which originated from statistical mechanics, deals with the relative probability that the entropy of a system which is currently away from thermodynamic equilibrium will increase or decrease over a given amount of time. While the second law of thermodynamics predicts that the entropy of an isolated system should tend to increase until it reaches equilibrium, it became apparent after the discovery of statistical mechanics that the second law is only a statistical one, suggesting that there should always be some nonzero probability that the entropy of an isolated system might spontaneously decrease; the fluctuation theorem precisely quantifies this probability.
Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities that represent an extrapolation of the variables used to specify the system in thermodynamic equilibrium. Non-equilibrium thermodynamics is concerned with transport processes and with the rates of chemical reactions.
The fluctuation–dissipation theorem (FDT) or fluctuation–dissipation relation (FDR) is a powerful tool in statistical physics for predicting the behavior of systems that obey detailed balance. Given that a system obeys detailed balance, the theorem is a proof that thermodynamic fluctuations in a physical variable predict the response quantified by the admittance or impedance of the same physical variable, and vice versa. The fluctuation–dissipation theorem applies both to classical and quantum mechanical systems.
Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is currently applied in a wide variety of engineering applications, including combustion, acoustics, and simulations of the atmospheric boundary layer.
The Green–Kubo relations give the exact mathematical expression for a transport coefficients in terms of the integral of the equilibrium time correlation function of the time derivative of a corresponding microscopic variable :
Quantum noise is noise arising from the indeterminate state of matter in accordance with fundamental principles of quantum mechanics, specifically the uncertainty principle and via zero-point energy fluctuations. Quantum noise is due to the apparently discrete nature of the small quantum constituents such as electrons, as well as the discrete nature of quantum effects, such as photocurrents.
The Crooks fluctuation theorem (CFT), sometimes known as the Crooks equation, is an equation in statistical mechanics that relates the work done on a system during a non-equilibrium transformation to the free energy difference between the final and the initial state of the transformation. During the non-equilibrium transformation the system is at constant volume and in contact with a heat reservoir. The CFT is named after the chemist Gavin E. Crooks (then at University of California, Berkeley) who discovered it in 1998.
A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynamic engine during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference through the application of work to the system.
The nonequilibrium partition identity (NPI) is a remarkably simple and elegant consequence of the fluctuation theorem previously known as the Kawasaki identity:
Phonon noise, also known as thermal fluctuation noise, arises from the random exchange of energy between a thermal mass and its surrounding environment. This energy is quantized in the form of phonons. Each phonon has an energy of order , where is the Boltzmann constant and is the temperature. The random exchange of energy leads to fluctuations in temperature. This occurs even when the thermal mass and the environment are in thermal equilibrium, i.e. at the same time-average temperature. If a device has a temperature-dependent electrical resistance, then these fluctuations in temperature lead to fluctuations in resistance. Examples of devices where phonon noise is important include bolometers and calorimeters. The superconducting transition edge sensor (TES), which can be operated either as a bolometer or a calorimeter, is an example of a device for which phonon noise can significantly contribute to the total noise.
The eigenstate thermalization hypothesis is a set of ideas which purports to explain when and why an isolated quantum mechanical system can be accurately described using equilibrium statistical mechanics. In particular, it is devoted to understanding how systems which are initially prepared in far-from-equilibrium states can evolve in time to a state which appears to be in thermal equilibrium. The phrase "eigenstate thermalization" was first coined by Mark Srednicki in 1994, after similar ideas had been introduced by Josh Deutsch in 1991. The principal philosophy underlying the eigenstate thermalization hypothesis is that instead of explaining the ergodicity of a thermodynamic system through the mechanism of dynamical chaos, as is done in classical mechanics, one should instead examine the properties of matrix elements of observable quantities in individual energy eigenstates of the system.
Reynolds stress equation model (RSM), also referred to as second moment closures are the most complete classical turbulence model. In these models, the eddy-viscosity hypothesis is avoided and the individual components of the Reynolds stress tensor are directly computed. These models use the exact Reynolds stress transport equation for their formulation. They account for the directional effects of the Reynolds stresses and the complex interactions in turbulent flows. Reynolds stress models offer significantly better accuracy than eddy-viscosity based turbulence models, while being computationally cheaper than Direct Numerical Simulations (DNS) and Large Eddy Simulations.
In continuum mechanics, an energy cascade involves the transfer of energy from large scales of motion to the small scales or a transfer of energy from the small scales to the large scales. This transfer of energy between different scales requires that the dynamics of the system is nonlinear. Strictly speaking, a cascade requires the energy transfer to be local in scale, evoking a cascading waterfall from pool to pool without long-range transfers across the scale domain.
Cavity optomechanics is a branch of physics which focuses on the interaction between light and mechanical objects on low-energy scales. It is a cross field of optics, quantum optics, solid-state physics and materials science. The motivation for research on cavity optomechanics comes from fundamental effects of quantum theory and gravity, as well as technological applications.
Stochastic thermodynamics is an emergent field of research in statistical mechanics that uses stochastic variables to better understand the non-equilibrium dynamics present in many microscopic systems such as colloidal particles, biopolymers, enzymes, and molecular motors.
The Mori–Zwanzig formalism, named after the physicists Hajime Mori and Robert Zwanzig, is a method of statistical physics. It allows the splitting of the dynamics of a system into a relevant and an irrelevant part using projection operators, which helps to find closed equations of motion for the relevant part. It is used e.g. in fluid mechanics or condensed matter physics.
In statistical mechanics and condensed matter physics, the Kovacs effect is a kind of memory effect in glassy systems below the glass-transition temperature. A.J. Kovacs observed that a system’s state out of equilibrium is defined not only by its macro thermodynamical variables, but also by the inner parameters of the system. In the original effect, in response to a temperature change, under constant pressure, the isobaric volume and free energy of the system experienced a recovery characterized by non-monotonic departure from equilibrium, whereas all other thermodynamical variables were in their equilibrium values. It is considered a memory effect since the relaxation dynamics of the system depend on its thermal and mechanical history.
For earlier results dealing with the statistics of work in adiabatic (i.e. Hamiltonian) nonequilibrium processes, see:
For a comparison of such results, see:
For an extension to relativistic Brownian motion, see: