Jens Dall Bentzen

Last updated

Jens Dall Bentzen (born 18 April 1968 in Aalborg) is a Danish engineer.

Bentzen studied Thermodynamics and Engineering at the Technical University of Denmark in Copenhagen. Bentzen made a master's degree in gasification of biomass in 1995. After his master's degree Bentzen worked as a researcher at the Technical University, developing a new gascleaning system for biomass gasification based on use of baghouse filtration.

Between 1998 and 2007 Bentzen worked for the major Danish consulting company COWI . Bentzen continued to co-operate with the Technical University, about optimizing and upscale of the gasification technology. In 2000 Bentzen filed a patent about the upscale high efficient gasification process (patent number WO 01/68789 A1). In 2004 was a licensagreement between COWI and a Danish boiler manufacturer. Between 2005 and 2008 was a pilot plant of the gasification process built and tested. Between 2009 and 2013 was a full scale demonstration plant built in Hillerød.

In 2006 Bentzen made a new invention about increased efficiency of biomass combustion plants, and a patent application was made (Patent number WO 2007/036236 A1). After negotiations with COWI and potential partners mr. Bentzen founded Dall Energy in 2007, with seed investment from Spraying Systems, and bought the patent application from COWI.

Since 2007 Bentzen have been managing director of Dall Energy. In 2011 Bentzen achieved the European Inventor Award as the first Dane ever. In 2017 Bentzen achieved the Blue tech award in China.

Innovation Awards

Related Research Articles

<span class="mw-page-title-main">Wood gas</span> Syngas fuel created by gasification of biomass

Wood gas is a fuel gas that can be used for furnaces, stoves, and vehicles. During the production process, biomass or related carbon-containing materials are gasified within the oxygen-limited environment of a wood gas generator to produce a combustible mixture. In some gasifiers this process is preceded by pyrolysis, where the biomass or coal is first converted to char, releasing methane and tar rich in polycyclic aromatic hydrocarbons.

Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principally used for producing ammonia or methanol. Syngas is combustible and can be used as a fuel. Historically, it has been used as a replacement for gasoline, when gasoline supply has been limited; for example, wood gas was used to power cars in Europe during WWII.

<span class="mw-page-title-main">Gasification</span> Form of energy conversion

Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.

<span class="mw-page-title-main">Shuji Nakamura</span> Inventor of the blue LED, 2014 Nobel laureate in Physics

Shuji Nakamura is a Japanese-born American electronic engineer and inventor specializing in the field of semiconductor technology, professor at the Materials Department of the College of Engineering, University of California, Santa Barbara (UCSB), and is regarded as the inventor of the blue LED, a major breakthrough in lighting technology.

The Fischer–Tropsch process is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen, known as syngas, into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The Fischer–Tropsch process is an important reaction in both coal liquefaction and gas to liquids technology for producing liquid hydrocarbons.

Cellulosic ethanol is ethanol produced from cellulose rather than from the plant's seeds or fruit. It can be produced from grasses, wood, algae, or other plants. It is generally discussed for use as a biofuel. The carbon dioxide that plants absorb as they grow offsets some of the carbon dioxide emitted when ethanol made from them is burned, so cellulosic ethanol fuel has the potential to have a lower carbon footprint than fossil fuels.

Coal liquefaction is a process of converting coal into liquid hydrocarbons: liquid fuels and petrochemicals. This process is often known as "Coal to X" or "Carbon to X", where X can be many different hydrocarbon-based products. However, the most common process chain is "Coal to Liquid Fuels" (CTL).

<span class="mw-page-title-main">Synthetic fuel</span> Fuel from carbon monoxide and hydrogen

Synthetic fuel or synfuel is a liquid fuel, or sometimes gaseous fuel, obtained from syngas, a mixture of carbon monoxide and hydrogen, in which the syngas was derived from gasification of solid feedstocks such as coal or biomass or by reforming of natural gas.

<span class="mw-page-title-main">Biomass to liquid</span>

Biomass to liquid is a multi-step process of producing synthetic hydrocarbon fuels made from biomass via a thermochemical route.

Underground coal gasification (UCG) is an industrial process which converts coal into product gas. UCG is an in-situ gasification process, carried out in non-mined coal seams using injection of oxidants and steam. The product gas is brought to the surface through production wells drilled from the surface.

<span class="mw-page-title-main">Refuse-derived fuel</span> Extracted combustible fraction of municipal and other solid waste

Refuse-derived fuel (RDF) is a fuel produced from various types of waste such as municipal solid waste (MSW), industrial waste or commercial waste.

Renewable natural gas (RNG), also known as biomethane or sustainable natural gas (SNG), is a biogas which has been upgraded to a quality similar to fossil natural gas and has a methane concentration of 90% or greater. By removing CO2 and other impurities from biogas, and increasing the concentration of methane to a level similar to fossil natural gas, it becomes possible to distribute RNG to customers via existing gas pipeline networks. RNG can be used in existing appliances, including vehicles with natural gas burning engines (natural gas vehicles). Renewable natural gas is a subset of synthetic natural gas or substitute natural gas (SNG).

<span class="mw-page-title-main">Waste-to-energy</span> Process of generating energy from the primary treatment of waste

Waste-to-energy (WtE) or energy-from-waste (EfW) is the process of generating energy in the form of electricity and/or heat from the primary treatment of waste, or the processing of waste into a fuel source. WtE is a form of energy recovery. Most WtE processes generate electricity and/or heat directly through combustion, or produce a combustible fuel commodity, such as methane, methanol, ethanol or synthetic fuels.

Plasma gasification is an extreme thermal process using plasma which converts organic matter into a syngas which is primarily made up of hydrogen and carbon monoxide. A plasma torch powered by an electric arc is used to ionize gas and catalyze organic matter into syngas, with slag remaining as a byproduct. It is used commercially as a form of waste treatment, and has been tested for the gasification of refuse-derived fuel, biomass, industrial waste, hazardous waste, and solid hydrocarbons, such as coal, oil sands, petcoke and oil shale.

Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel.

Bioenergy with carbon capture and storage (BECCS) is the process of extracting bioenergy from biomass and capturing and storing the carbon, thereby removing it from the atmosphere. BECCS can be a "negative emissions technology" (NET). The carbon in the biomass comes from the greenhouse gas carbon dioxide (CO2) which is extracted from the atmosphere by the biomass when it grows. Energy ("bioenergy") is extracted in useful forms (electricity, heat, biofuels, etc.) as the biomass is utilized through combustion, fermentation, pyrolysis or other conversion methods.

Chemrec AB (Chemrec) is a Stockholm, Sweden-based company with comprehensive experience of pioneering the development of black liquor gasification (BLG) technology for energy and chemicals recovery at pulp mills.

The European Inventor Award(formerly European Inventor of the Year Award, renamed in 2010), are presented annually by the European Patent Office, sometimes supported by the respective Presidency of the Council of the European Union and by the European Commission, to inventors who have made a significant contribution to innovation, economy and society in Europe. Inventions from all technological fields are considered for this award. The winners in each category are presented with an award shaped like a sail. There is no cash prize associated with the award.

<span class="mw-page-title-main">Chinook Sciences</span>

Chinook Sciences is a US and UK based technology company that specializes in waste to energy and metal recovery.

The circulating fluidized bed (CFB) is a type of Fluidized bed combustion that utilizes a recirculating loop for even greater efficiency of combustion. while achieving lower emission of pollutants. Reports suggest that up to 95% of pollutants can be absorbed before being emitted into the atmosphere. The technology is limited in scale however, due to its extensive use of limestone, and the fact that it produces waste byproducts.