Jeremy Rickard

Last updated

Jeremy Rickard, Oberwolfach 2006 Rickard jeremy.jpg
Jeremy Rickard, Oberwolfach 2006

Jeremy Rickard, also known as J. C. Rickard or J. Rickard, is a British mathematician who deals with algebra and algebraic topology. He researches modular representation theory of finite groups and related questions of algebraic topology, representation theory of finite algebras and homological algebra. Rickard or derived equivalences as a generalization of Morita equivalences of rings and algebras are named after him.

Contents

Education and career

Rickard received his PhD in 1988 from University College London under Aidan Schofield. [1] He is a professor at the University of Bristol.

Recognition

Rickard was a winner of the Whitehead Prize in 1995. In 2002 he received the Senior Berwick Prize. In 1998 he was an Invited Speaker with talk The abelian defect group conjecture at the International Congress of Mathematicians in Berlin. [2]

Selected publications

Related Research Articles

<span class="mw-page-title-main">Algebraic topology</span> Branch of mathematics

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

<span class="mw-page-title-main">Jean-Pierre Serre</span> French mathematician

Jean-Pierre Serre is a French mathematician who has made contributions to algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the inaugural Abel Prize in 2003.

<span class="mw-page-title-main">John Tate (mathematician)</span> American mathematician (1925–2019)

John Torrence Tate Jr. was an American mathematician, distinguished for many fundamental contributions in algebraic number theory, arithmetic geometry and related areas in algebraic geometry. He was awarded the Abel Prize in 2010.

<span class="mw-page-title-main">J. H. C. Whitehead</span>

John Henry Constantine Whitehead FRS, known as Henry, was a British mathematician and was one of the founders of homotopy theory. He was born in Chennai, in India, and died in Princeton, New Jersey, in 1960.

<span class="mw-page-title-main">Pierre Deligne</span> Belgian mathematician

Pierre René, Viscount Deligne is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal.

Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.

<span class="mw-page-title-main">Geometric group theory</span>

Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act.

In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology.

<span class="mw-page-title-main">Tate conjecture</span>

In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture.

In mathematics, a Tannakian category is a particular kind of monoidal category C, equipped with some extra structure relative to a given field K. The role of such categories C is to approximate, in some sense, the category of linear representations of an algebraic group G defined over K. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory.

<span class="mw-page-title-main">Dennis Sullivan</span> American mathematician (born 1941)

Dennis Parnell Sullivan is an American mathematician known for his work in algebraic topology, geometric topology, and dynamical systems. He holds the Albert Einstein Chair at the City University of New York Graduate Center and is a distinguished professor at Stony Brook University.

<span class="mw-page-title-main">Zlil Sela</span> Israeli mathematician

Zlil Sela is an Israeli mathematician working in the area of geometric group theory. He is a Professor of Mathematics at the Hebrew University of Jerusalem. Sela is known for the solution of the isomorphism problem for torsion-free word-hyperbolic groups and for the solution of the Tarski conjecture about equivalence of first-order theories of finitely generated non-abelian free groups.

<span class="mw-page-title-main">Michael J. Hopkins</span> American mathematician

Michael Jerome Hopkins is an American mathematician known for work in algebraic topology.

In mathematics, specifically representation theory, tilting theory describes a way to relate the module categories of two algebras using so-called tilting modules and associated tilting functors. Here, the second algebra is the endomorphism algebra of a tilting module over the first algebra.

In mathematics, Lafforgue's theorem, due to Laurent Lafforgue, completes the Langlands program for general linear groups over algebraic function fields, by giving a correspondence between automorphic forms on these groups and representations of Galois groups.

<span class="mw-page-title-main">Richard Thomas (mathematician)</span>

Richard Paul Winsley Thomas FRS is a British mathematician working in several areas of geometry. He is a professor at Imperial College London. He studies moduli problems in algebraic geometry, and ‘mirror symmetry’—a phenomenon in pure mathematics predicted by string theory in theoretical physics.

In algebraic K-theory, the K-theory of a categoryC is a sequence of abelian groups Ki(C) associated to it. If C is an abelian category, there is no need for extra data, but in general it only makes sense to speak of K-theory after specifying on C a structure of an exact category, or of a Waldhausen category, or of a dg-category, or possibly some other variants. Thus, there are several constructions of those groups, corresponding to various kinds of structures put on C. Traditionally, the K-theory of C is defined to be the result of a suitable construction, but in some contexts there are more conceptual definitions. For instance, the K-theory is a 'universal additive invariant' of dg-categories and small stable ∞-categories.

In mathematics, Koszul duality, named after the French mathematician Jean-Louis Koszul, is any of various kinds of dualities found in representation theory of Lie algebras, abstract algebras and topology. The prototype example, due to Joseph Bernstein, Israel Gelfand, and Sergei Gelfand, is the rough duality between the derived category of a symmetric algebra and that of an exterior algebra. The importance of the notion rests on the suspicion that Koszul duality seems quite ubiquitous in nature.

Radha Kessar is an Indian mathematician known for her research in the representation theory of finite groups. She is a professor of mathematics at the University of Manchester, and in 2009 won the Berwick Prize of the London Mathematical Society.

Klaus Wilhelm Roggenkamp was a German mathematician, specializing in algebra.

References

  1. Jeremy Rickard at the Mathematics Genealogy Project
  2. "Mathematician awarded prestigious prize". University of Bristol. 28 June 2002. Retrieved 28 June 2020.