John Rainwater | |
---|---|
Known for | Rainwater's theorem, Rainwater seminar (functional analysis) |
The fictitious mathematician John Rainwater was created as a student prank but has become known as the author of important results in functional analysis.
At the University of Washington in 1952, John Rainwater was invented and enrolled in a mathematics course by graduate students who were in possession of a duplicate student-registration form. Later, mathematicians published under the pseudonym of John Rainwater.
Papers were published under the name Rainwater mainly in functional analysis, particularly in the geometric theory of Banach spaces and in convex functions. Rainwater's theorem is an important result in summability theory and functional analysis. The University of Washington's seminar in functional analysis is called the Rainwater seminar, and the associated Rainwater notes have influenced Banach-space theory and convex analysis. [1]
The concept of a fictional pseudonym used by multiple people creating valuable mathematics is not unique. Most notably, Nicolas Bourbaki has been the collective pseudonym for a number of leading mathematicians writing in French for many decades.
John Rainwater was invented by graduate students at the University of Washington in 1952, when students used an extra registration form to enroll Rainwater in a course on real functions. Students submitted homework for Rainwater throughout the semester. The professor caught on to the prank around the middle of the term. Other students in the class were made aware of the situation from the professor's enigmatic remarks after he became the victim of a novelty "exploding" fountain pen bearing Rainwater's name. [2]
Early on, Rainwater distinguished himself by solving problems in the American Mathematical Monthly , whose sponsoring society, the Mathematical Association of America, invited him to join. John R. Isbell published the first paper in Rainwater's name. Other mathematicians have published papers using the name "Rainwater", and acknowledged "Rainwater's assistance" in articles. The seminar on functional analysis at the University of Washington has been called the "Rainwater seminar". [1] Rainwater's theorem is an important result in summability theory and Banach-space theory. [3] [4]
In 2002 Robert Phelps summarized the impact of Rainwater's research. The first Rainwater paper (by Isbell) was in topology and had had 19 citations. While only one page, Rainwater's note in the 1963 Proceedings of the American Mathematical Society had had eight citations in papers; its main result has been called "Rainwater's theorem" in books on convex functions and functional analysis. "There is even one citation to number 13, his unpublished 1967 Rainwater Seminar note on Lindenstrauss spaces," which are named after a construction by Joram Lindenstrauss. "In summary, it appears that most of John Rainwater's published work has been reasonably well received." [1] While Rainwater is lesser known and younger than Nicolas Bourbaki, the collective pseudonym for a number of leading mathematicians writing in French, he is more senior and has more publications than the combination of research by three other pseudonymous mathematicians—Peter Orno, M. G. Stanley, and H. C. Enos. [5]
Many internationally renowned mathematicians have published under the name of John Rainwater. John Isbell wrote Rainwater's first, second, and tenth papers; by 2002, Isbell had also written or coauthored six other pseudonymous papers under two other names. Functional analyst Robert R. Phelps wrote the third, ninth, eleventh (an unpublished note for the Rainwater seminar), twelfth, and thirteenth (with Peter D. Morris), fifteenth (with Isaac Namioka), and sixteenth (with David Preiss) papers. Irving Glicksberg wrote the fourth and eighth papers. Edgar Asplund wrote the seventh. "Paper 14 is a departure for John Rainwater. Not only is it in algebra, but he doesn't thank anyone for helpful conversations. He notes, however, that his work was supported by four different grants. (Culprits this time were Ken A. Brown, Ken Goodearl, Toby Stafford and Bob Warfield.)" John Rainwater's c.v. lists an incomplete collection of problems or solutions that he contributed to the American Mathematical Monthly , the earliest in 1959 (by John Isbell). [1]
John Rainwater came into existence at the University of Washington in 1952 when Nick Massey, a mathematics graduate student in Prof. Maynard Arsove's beginning real variables class, erroneously received a blank registration card. (In those years, each student filled out a card for every class, which first circulated among various tabulating clerks in the registrar's office before being sent to the professor.) He and a fellow graduate student, Sam Saunders, decided to use the card to enroll a fictional student, and since it was raining at the time, decided to call him "John Rainwater". They handed in John Rainwater's homework regularly, so it wasn't until after the first midterm exam that Prof. Arsove became aware of the deception. He took it well, even when he later opened an "exploding" fountain pen with John Rainwater's name engraved on it which had been left on the classroom table. After remarks by Arsove, such as "I guess I'll never see Rainwater except in a barrel," virtually all the students learned of the Rainwater prank. ( Phelps 2002 )
In mathematics, especially in functional analysis, the Tsirelson space is the first example of a Banach space in which neither an ℓ p space nor a c0 space can be embedded. The Tsirelson space is reflexive.
Roger Godement was a French mathematician, known for his work in functional analysis as well as his expository books.
In functional analysis and related areas of mathematics, a barrelled space is a topological vector space (TVS) for which every barrelled set in the space is a neighbourhood for the zero vector. A barrelled set or a barrel in a topological vector space is a set that is convex, balanced, absorbing, and closed. Barrelled spaces are studied because a form of the Banach–Steinhaus theorem still holds for them. Barrelled spaces were introduced by Bourbaki.
Czesław Ryll-Nardzewski was a Polish mathematician.
In mathematics, Choquet theory, named after Gustave Choquet, is an area of functional analysis and convex analysis concerned with measures which have support on the extreme points of a convex set C. Roughly speaking, every vector of C should appear as a weighted average of extreme points, a concept made more precise by generalizing the notion of weighted average from a convex combination to an integral taken over the set E of extreme points. Here C is a subset of a real vector space V, and the main thrust of the theory is to treat the cases where V is an infinite-dimensional topological vector space along lines similar to the finite-dimensional case. The main concerns of Gustave Choquet were in potential theory. Choquet theory has become a general paradigm, particularly for treating convex cones as determined by their extreme rays, and so for many different notions of positivity in mathematics.
In mathematics, a vector measure is a function defined on a family of sets and taking vector values satisfying certain properties. It is a generalization of the concept of finite measure, which takes nonnegative real values only.
In the mathematical field of functional analysis, the Eberlein–Šmulian theorem is a result that relates three different kinds of weak compactness in a Banach space.
Joram Lindenstrauss was an Israeli mathematician working in functional analysis. He was a professor of mathematics at the Einstein Institute of Mathematics.
In mathematics, Auerbach's lemma, named after Herman Auerbach, is a theorem in functional analysis which asserts that a certain property of Euclidean spaces holds for general finite-dimensional normed vector spaces.
In mathematics — specifically, in functional analysis — an Asplund space or strong differentiability space is a type of well-behaved Banach space. Asplund spaces were introduced in 1968 by the mathematician Edgar Asplund, who was interested in the Fréchet differentiability properties of Lipschitz functions on Banach spaces.
John Rolfe Isbell was an American mathematician. For many years he was a professor of mathematics at the University at Buffalo (SUNY).
Beginning in 1974, the fictitious Peter Orno appeared as the author of research papers in mathematics. According to Robert Phelps, the name "P. Orno" is a pseudonym that was inspired by "porno", an abbreviation for "pornography". Orno's short papers have been called "elegant" contributions to functional analysis. Orno's theorem on linear operators is important in the theory of Banach spaces. Research mathematicians have written acknowledgments that have thanked Orno for stimulating discussions and for Orno's generosity in allowing others to publish his results. The Mathematical Association of America's journals have also published more than a dozen problems whose solutions were submitted in the name of Orno.
Robert Ralph Phelps was an American mathematician who was known for his contributions to analysis, particularly to functional analysis and measure theory. He was a professor of mathematics at the University of Washington from 1962 until his death.
Claude Ambrose Rogers FRS was an English mathematician who worked in analysis and geometry.
Hans Vilhem Rådström (1919–1970) was a Swedish mathematician who worked on complex analysis, continuous groups, convex sets, set-valued analysis, and game theory. From 1952, he was lektor at Stockholm University, and from 1969, he was Professor of Applied Mathematics at Linköping University.
Isaac Namioka was a Japanese-American mathematician who worked in general topology and functional analysis. He was a professor emeritus of mathematics at the University of Washington. He died at home in Seattle on September 25, 2019.
Joseph Diestel was an American mathematician and Professor of Mathematics at Kent State University. In addition to his contribution to functional analysis, particularly Banach space theory and the theory of vector measures, Diestel was known for a number of highly influential textbooks: in 1975 he published "Lecture Notes Geometry of Banach Spaces—Selected Topics"; in 1977, he published "Vector Measures" with J. Jerry Uhl; in 1984, published "Sequences and series in Banach spaces" and in 1995 he published "Absolutely summing operators" with H. Jarchow and A. Tonge; as well as a number of other books.
In functional analysis, a discipline within mathematics, a locally convex topological vector space (TVS) is said to be infrabarrelled if every bounded barrel is a neighborhood of the origin.
In mathematics, particularly in functional analysis, the closed graph theorem is a result connecting the continuity of a linear operator to a topological property of their graph. Precisely, the theorem states that a linear operator between two Banach spaces is continuous if and only if the graph of the operator is closed.
The Rainwater seminar and Rainwater notes are listed as influences by the following books:
Collaborative pseudonyms: