Jordan operator algebra

Last updated

In mathematics, Jordan operator algebras are real or complex Jordan algebras with the compatible structure of a Banach space. When the coefficients are real numbers, the algebras are called Jordan Banach algebras. The theory has been extensively developed only for the subclass of JB algebras. The axioms for these algebras were devised by Alfsen, Shultz & Størmer (1978). Those that can be realised concretely as subalgebras of self-adjoint operators on a real or complex Hilbert space with the operator Jordan product and the operator norm are called JC algebras. The axioms for complex Jordan operator algebras, first suggested by Irving Kaplansky in 1976, require an involution and are called JB* algebras or Jordan C* algebras. By analogy with the abstract characterisation of von Neumann algebras as C* algebras for which the underlying Banach space is the dual of another, there is a corresponding definition of JBW algebras. Those that can be realised using ultraweakly closed Jordan algebras of self-adjoint operators with the operator Jordan product are called JW algebras. The JBW algebras with trivial center, so-called JBW factors, are classified in terms of von Neumann factors: apart from the exceptional 27 dimensional Albert algebra and the spin factors, all other JBW factors are isomorphic either to the self-adjoint part of a von Neumann factor or to its fixed point algebra under a period two *-anti-automorphism. Jordan operator algebras have been applied in quantum mechanics and in complex geometry, where Koecher's description of bounded symmetric domains using Jordan algebras has been extended to infinite dimensions.

Contents

Definitions

JC algebra

A JC algebra is a real subspace of the space of self-adjoint operators on a real or complex Hilbert space, closed under the operator Jordan product ab = 1/2(ab + ba) and closed in the operator norm.

JC algebra

A JC algebra is a norm-closed self-adjoint subspace of the space of operators on a complex Hilbert space, closed under the operator Jordan product ab = 1/2(ab + ba) and closed in the operator norm.

Jordan operator algebra

A Jordan operator algebra is a norm-closed subspace of the space of operators on a complex Hilbert space, closed under the Jordan product ab = 1/2(ab + ba) and closed in the operator norm. [1]

Jordan Banach algebra

A Jordan Banach algebra is a real Jordan algebra with a norm making it a Banach space and satisfying || ab || ≤ ||a||⋅||b||.

JB algebra

A JB algebra is a Jordan Banach algebra satisfying

JB* algebras

A JB* algebra or Jordan C* algebra is a complex Jordan algebra with an involution aa* and a norm making it a Banach space and satisfying

JW algebras

A JW algebra is a Jordan subalgebra of the Jordan algebra of self-adjoint operators on a complex Hilbert space that is closed in the weak operator topology.

JBW algebras

A JBW algebra is a JB algebra that, as a real Banach space, is the dual of a Banach space called its predual. [2] There is an equivalent more technical definition in terms of the continuity properties of the linear functionals in the predual, called normal functionals. This is usually taken as the definition and the abstract characterization as a dual Banach space derived as a consequence. [3]

Properties of JB algebras

Properties of JB* algebras

The definition of JB* algebras was suggested in 1976 by Irving Kaplansky at a lecture in Edinburgh. The real part of a JB* algebra is always a JB algebra. Wright (1977) proved that conversely the complexification of every JB algebra is a JB* algebra. JB* algebras have been used extensively as a framework for studying bounded symmetric domains in infinite dimensions. This generalizes the theory in finite dimensions developed by Max Koecher using the complexification of a Euclidean Jordan algebra. [7]

Properties of JBW algebras

Elementary properties

Comparison of projections

Let M be a JBW factor. The inner automorphisms of M are those generated by the period two automorphisms Q(1 – 2p) where p is a projection. Two projections are equivalent if there is an inner automorphism carrying one onto the other. Given two projections in a factor, one of them is always equivalent to a sub-projection of the other. If each is equivalent to a sub-projection of the other, they are equivalent.

A JBW factor can be classified into three mutually exclusive types as follows:

Tomita–Takesaki theory permits a further classification of the type III case into types IIIλ (0 ≤ λ ≤ 1) with the additional invariant of an ergodic flow on a Lebesgue space (the "flow of weights") when λ = 0. [11]

Classification of JBW factors of Type I

Classification of JBW factors of Types II and III

The JBW factors not of Type I2 and I3 are all JW factors, i.e. can be realized as Jordan algebras of self-adjoint operators on a Hilbert space closed in the weak operator topology. Every JBW factor not of Type I2 or Type I3 is isomorphic to the self-adjoint part of the fixed point algebra of a period 2 *-anti-automorphism of a von Neumann algebra. In particular each JBW factor is either isomorphic to the self-adjoint part of a von Neumann factor of the same type or to the self-adjoint part of the fixed point algebra of a period 2 *-anti-automorphism of a von Neumann factor of the same type. [13] For hyperfinite factors, the class of von Neumann factors completely classified by Connes and Haagerup, the period 2 *-antiautomorphisms have been classified up to conjugacy in the automorphism group of the factor. [14]

See also

Notes

  1. Blecher & Wang 2018 , p. 1629
  2. Hanche-Olsen & Størmer 1984 , p. 111
  3. Hanche-Olsen & Størmer 1984 , p. 94
  4. Faraut & Korányi 1994
  5. Hanche-Olsen & Størmer 1984 , pp. 75–90
  6. Hanche-Olsen & Størmer 1984 , pp. 155–156
  7. See:
  8. See:
  9. Hanche-Olsen & Størmer 1984 , pp. 94–119
  10. Hanche-Olsen & Størmer 1984 , pp. 120–134
  11. Haagerup & Hanche-Olsen 1984
  12. Hanche-Olsen & Størmer 1984
  13. See:
  14. See:

Related Research Articles

In mathematics, specifically in functional analysis, a C-algebra is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:

In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra.

In functional analysis and related areas of mathematics, the group algebra is any of various constructions to assign to a locally compact group an operator algebra, such that representations of the algebra are related to representations of the group. As such, they are similar to the group ring associated to a discrete group.

In functional analysis, a state of an operator system is a positive linear functional of norm 1. States in functional analysis generalize the notion of density matrices in quantum mechanics, which represent quantum states, both §§ Mixed states​ and pure states. Density matrices in turn generalize state vectors, which only represent pure states. For M an operator system in a C*-algebra A with identity, the set of all states ofM, sometimes denoted by S(M), is convex, weak-* closed in the Banach dual space M*. Thus the set of all states of M with the weak-* topology forms a compact Hausdorff space, known as the state space of M.

In mathematics, specifically functional analysis, the von Neumann bicommutant theorem relates the closure of a set of bounded operators on a Hilbert space in certain topologies to the bicommutant of that set. In essence, it is a connection between the algebraic and topological sides of operator theory.

<span class="mw-page-title-main">Operator algebra</span> Branch of functional analysis

In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings.

In the mathematical field of functional analysis there are several standard topologies which are given to the algebra B(X) of bounded linear operators on a Banach space X.

In mathematics, Stone's theorem on one-parameter unitary groups is a basic theorem of functional analysis that establishes a one-to-one correspondence between self-adjoint operators on a Hilbert space and one-parameter families

In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms:

  1. .

In mathematics, particularly in functional analysis and ring theory, an approximate identity is a net in a Banach algebra or ring that acts as a substitute for an identity element.

In mathematics, and more specifically in the theory of von Neumann algebras, a crossed product is a basic method of constructing a new von Neumann algebra from a von Neumann algebra acted on by a group. It is related to the semidirect product construction for groups.

In the theory of von Neumann algebras, a part of the mathematical field of functional analysis, Tomita–Takesaki theory is a method for constructing modular automorphisms of von Neumann algebras from the polar decomposition of a certain involution. It is essential for the theory of type III factors, and has led to a good structure theory for these previously intractable objects.

In mathematics, affiliated operators were introduced by Murray and von Neumann in the theory of von Neumann algebras as a technique for using unbounded operators to study modules generated by a single vector. Later Atiyah and Singer showed that index theorems for elliptic operators on closed manifolds with infinite fundamental group could naturally be phrased in terms of unbounded operators affiliated with the von Neumann algebra of the group. Algebraic properties of affiliated operators have proved important in L2 cohomology, an area between analysis and geometry that evolved from the study of such index theorems.

In the theory of von Neumann algebras, the Kaplansky density theorem, due to Irving Kaplansky, is a fundamental approximation theorem. The importance and ubiquity of this technical tool led Gert Pedersen to comment in one of his books that,

In mathematics, a commutation theorem for traces explicitly identifies the commutant of a specific von Neumann algebra acting on a Hilbert space in the presence of a trace.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

In mathematics, symmetric cones, sometimes called domains of positivity, are open convex self-dual cones in Euclidean space which have a transitive group of symmetries, i.e. invertible operators that take the cone onto itself. By the Koecher–Vinberg theorem these correspond to the cone of squares in finite-dimensional real Euclidean Jordan algebras, originally studied and classified by Jordan, von Neumann & Wigner (1934). The tube domain associated with a symmetric cone is a noncompact Hermitian symmetric space of tube type. All the algebraic and geometric structures associated with the symmetric space can be expressed naturally in terms of the Jordan algebra. The other irreducible Hermitian symmetric spaces of noncompact type correspond to Siegel domains of the second kind. These can be described in terms of more complicated structures called Jordan triple systems, which generalize Jordan algebras without identity.

In the theory of C*-algebras, the universal representation of a C*-algebra is a faithful representation which is the direct sum of the GNS representations corresponding to the states of the C*-algebra. The various properties of the universal representation are used to obtain information about the ideals and quotients of the C*-algebra. The close relationship between an arbitrary representation of a C*-algebra and its universal representation can be exploited to obtain several criteria for determining whether a linear functional on the algebra is ultraweakly continuous. The method of using the properties of the universal representation as a tool to prove results about the C*-algebra and its representations is commonly referred to as universal representation techniques in the literature.

This is a glossary for the terminology in a mathematical field of functional analysis.

References