Juli Feigon

Last updated

Juli Feigon is a Distinguished Professor of Biochemistry at the University of California, Los Angeles, where she has been a faculty member since 1985. She was elected to the United States National Academy of Sciences in 2009. Her research focuses on structural studies of nucleic acids by nuclear magnetic resonance spectroscopy along with other biophysical techniques. [1]

Contents

Education

After completing undergraduate studies at Occidental College, Feigon received her Ph.D. from the University of California, San Diego in 1982. She then worked as a postdoctoral fellow with Alexander Rich at the Massachusetts Institute of Technology from 1982-85. [1]

Academic career

Feigon joined the faculty in the Department of Chemistry and Biochemistry at UCLA in 1985 as the first female assistant professor in the department. [2] She was a recipient of the National Science Foundation's Presidential Young Investigator Award, awarded in 1989. She became a fellow of the American Association for the Advancement of Science in 2002 and a member of the United States National Academy of Sciences in 2009. [3] [4] She has won the 2019 BPS Founders Award. [5] In 2024, Feigon was awarded the Glenn T. Seaborg Medal.

Research

Feigon's research specializes in nuclear magnetic resonance spectroscopy (NMR) studies of the structure and dynamics of nucleic acids. Her research group has invested significant effort in determining the structure of telomerase, using NMR, X-ray crystallography, and more recently cryo-electron microscopy. [6] [7] [8] [9] [10]

Helping Hands Award

In 2024, Juli Feigon established the UCLA Department of Chemistry & Biochemistry Juli Feigon Helping Hands Award. The Juli Feigon Helping Hands Award is an annual award for postdoctoral fellows, research staff, and graduate students who are primary caregivers for dependent children or other family members, to provide extra time and resources to pursue their scientific careers. [2]

Related Research Articles

<span class="mw-page-title-main">Biophysics</span> Study of biological systems using methods from the physical sciences

Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. Biophysics covers all scales of biological organization, from molecular to organismic and populations. Biophysical research shares significant overlap with biochemistry, molecular biology, physical chemistry, physiology, nanotechnology, bioengineering, computational biology, biomechanics, developmental biology and systems biology.

<span class="mw-page-title-main">Telomerase</span> Telomere-restoring protein active in the most rapidly dividing cells

Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most eukaryotes. Telomeres protect the end of the chromosome from DNA damage or from fusion with neighbouring chromosomes. The fruit fly Drosophila melanogaster lacks telomerase, but instead uses retrotransposons to maintain telomeres.

<span class="mw-page-title-main">Pseudoknot</span> Nucleic acid secondary structure

A pseudoknot is a nucleic acid secondary structure containing at least two stem-loop structures in which half of one stem is intercalated between the two halves of another stem. The pseudoknot was first recognized in the turnip yellow mosaic virus in 1982. Pseudoknots fold into knot-shaped three-dimensional conformations but are not true topological knots. These structures are categorized as cross (X) topology within the circuit topology framework, which, in contrast to knot theory, is a contact-based approach.

<span class="mw-page-title-main">Molecular biophysics</span> Interdisciplinary research area

Molecular biophysics is a rapidly evolving interdisciplinary area of research that combines concepts in physics, chemistry, engineering, mathematics and biology. It seeks to understand biomolecular systems and explain biological function in terms of molecular structure, structural organization, and dynamic behaviour at various levels of complexity. This discipline covers topics such as the measurement of molecular forces, molecular associations, allosteric interactions, Brownian motion, and cable theory. Additional areas of study can be found on Outline of Biophysics. The discipline has required development of specialized equipment and procedures capable of imaging and manipulating minute living structures, as well as novel experimental approaches.

Adriaan "Ad" Bax is a Dutch-American molecular biophysicist. He was born in the Netherlands and is the Chief of the Section on Biophysical NMR Spectroscopy at the National Institutes of Health. He is known for his work on the methodology of biomolecular NMR spectroscopy. He is a corresponding member of the Royal Netherlands Academy of Arts and Sciences, a member of the National Academy of Sciences, a fellow of the American Academy of Arts and Sciences, and a Foreign Member of the Royal Society.

<span class="mw-page-title-main">David Eisenberg</span> American biochemist and biophysicist (born 1939)

David S. Eisenberg is an American biochemist and biophysicist best known for his contributions to structural biology and computational molecular biology. He has been a professor at the University of California, Los Angeles since the early 1970s and was director of the UCLA-DOE Institute for Genomics & Proteomics, as well as a member of the California NanoSystems Institute (CNSI) at UCLA.

<span class="mw-page-title-main">Jane S. Richardson</span> American biophysicist

Jane Shelby Richardson is an American biophysicist best known for developing the Richardson diagram, or ribbon diagram, a method of representing the 3D structure of proteins. Ribbon diagrams have become a standard representation of protein structures that has facilitated further investigation of protein structure and function globally. With interests in astronomy, math, physics, botany, and philosophy, Richardson took an unconventional route to establishing a science career. Richardson is a professor in biochemistry at Duke University.

<span class="mw-page-title-main">Telomerase RNA component</span> NcRNA found in eukaryotes

Telomerase RNA component, also known as TR, TER or TERC, is an ncRNA found in eukaryotes that is a component of telomerase, the enzyme used to extend telomeres. TERC serves as a template for telomere replication by telomerase. Telomerase RNAs differ greatly in sequence and structure between vertebrates, ciliates and yeasts, but they share a 5' pseudoknot structure close to the template sequence. The vertebrate telomerase RNAs have a 3' H/ACA snoRNA-like domain.

<span class="mw-page-title-main">Helen M. Berman</span> American chemist

Helen Miriam Berman is a Board of Governors Professor of Chemistry and Chemical Biology at Rutgers University and a former director of the RCSB Protein Data Bank. A structural biologist, her work includes structural analysis of protein-nucleic acid complexes, and the role of water in molecular interactions. She is also the founder and director of the Nucleic Acid Database, and led the Protein Structure Initiative Structural Genomics Knowledgebase.

Experimental approaches of determining the structure of nucleic acids, such as RNA and DNA, can be largely classified into biophysical and biochemical methods. Biophysical methods use the fundamental physical properties of molecules for structure determination, including X-ray crystallography, NMR and cryo-EM. Biochemical methods exploit the chemical properties of nucleic acids using specific reagents and conditions to assay the structure of nucleic acids. Such methods may involve chemical probing with specific reagents, or rely on native or analogue chemistry. Different experimental approaches have unique merits and are suitable for different experimental purposes.

Xiaowei Zhuang is a Chinese-American biophysicist who is the David B. Arnold Jr. Professor of Science, Professor of Chemistry and Chemical Biology, and Professor of Physics at Harvard University, and an Investigator at the Howard Hughes Medical Institute. She is best known for her work in the development of Stochastic Optical Reconstruction Microscopy (STORM), a super-resolution fluorescence microscopy method, and the discoveries of novel cellular structures using STORM. She received a 2019 Breakthrough Prize in Life Sciences for developing super-resolution imaging techniques that get past the diffraction limits of traditional light microscopes, allowing scientists to visualize small structures within living cells. She was elected a Member of the American Philosophical Society in 2019 and was awarded a Vilcek Foundation Prize in Biomedical Science in 2020.

<span class="mw-page-title-main">Triple helix</span> Set of three congruent geometrical helices with the same axis

In the fields of geometry and biochemistry, a triple helix is a set of three congruent geometrical helices with the same axis, differing by a translation along the axis. This means that each of the helices keeps the same distance from the central axis. As with a single helix, a triple helix may be characterized by its pitch, diameter, and handedness. Examples of triple helices include triplex DNA, triplex RNA, the collagen helix, and collagen-like proteins.

Nucleic acid NMR is the use of nuclear magnetic resonance spectroscopy to obtain information about the structure and dynamics of nucleic acid molecules, such as DNA or RNA. It is useful for molecules of up to 100 nucleotides, and as of 2003, nearly half of all known RNA structures had been determined by NMR spectroscopy.

<span class="mw-page-title-main">Macromolecular assembly</span>

The term macromolecular assembly (MA) refers to massive chemical structures such as viruses and non-biologic nanoparticles, cellular organelles and membranes and ribosomes, etc. that are complex mixtures of polypeptide, polynucleotide, polysaccharide or other polymeric macromolecules. They are generally of more than one of these types, and the mixtures are defined spatially, and with regard to their underlying chemical composition and structure. Macromolecules are found in living and nonliving things, and are composed of many hundreds or thousands of atoms held together by covalent bonds; they are often characterized by repeating units. Assemblies of these can likewise be biologic or non-biologic, though the MA term is more commonly applied in biology, and the term supramolecular assembly is more often applied in non-biologic contexts. MAs of macromolecules are held in their defined forms by non-covalent intermolecular interactions, and can be in either non-repeating structures, or in repeating linear, circular, spiral, or other patterns. The process by which MAs are formed has been termed molecular self-assembly, a term especially applied in non-biologic contexts. A wide variety of physical/biophysical, chemical/biochemical, and computational methods exist for the study of MA; given the scale of MAs, efforts to elaborate their composition and structure and discern mechanisms underlying their functions are at the forefront of modern structure science.

<span class="mw-page-title-main">Ruth Nussinov</span> Bioinformatician

Ruth Nussinov is an Israeli-American biologist born in Rehovot who works as a Professor in the Department of Human Genetics, School of Medicine at Tel Aviv University and is the Senior Principal Scientist and Principal Investigator at the National Cancer Institute, National Institutes of Health. Nussinov is also the Editor in Chief of the Current Opinion in Structural Biology and formerly of the journal PLOS Computational Biology.

<span class="mw-page-title-main">G. Marius Clore</span> Molecular biophysicist, structural biologist

G. Marius Clore MAE, FRSC, FMedSci, FRS is a British-born, American molecular biophysicist and structural biologist. He was born in London, U.K. and is a dual U.S./U.K. Citizen. He is a Member of the National Academy of Sciences, a Fellow of the Royal Society, a NIH Distinguished Investigator, and the Chief of the Molecular and Structural Biophysics Section in the Laboratory of Chemical Physics of the National Institute of Diabetes and Digestive and Kidney Diseases at the U.S. National Institutes of Health. He is known for his foundational work in three-dimensional protein and nucleic acid structure determination by biomolecular NMR spectroscopy, for advancing experimental approaches to the study of large macromolecules and their complexes by NMR, and for developing NMR-based methods to study rare conformational states in protein-nucleic acid and protein-protein recognition. Clore's discovery of previously undetectable, functionally significant, rare transient states of macromolecules has yielded fundamental new insights into the mechanisms of important biological processes, and in particular the significance of weak interactions and the mechanisms whereby the opposing constraints of speed and specificity are optimized. Further, Clore's work opens up a new era of pharmacology and drug design as it is now possible to target structures and conformations that have been heretofore unseen.

<span class="mw-page-title-main">Mei Hong (chemist)</span> Chinese-American chemist

Mei Hong is a Chinese-American biophysical chemist and professor of chemistry at the Massachusetts Institute of Technology. She is known for her creative development and application of solid-state nuclear magnetic resonance (ssNMR) spectroscopy to elucidate the structures and mechanisms of membrane proteins, plant cell walls, and amyloid proteins. She has received a number of recognitions for her work, including the American Chemical Society Nakanishi Prize in 2021, Günther Laukien Prize in 2014, the Protein Society Young Investigator award in 2012, and the American Chemical Society’s Pure Chemistry award in 2003.

<span class="mw-page-title-main">Nicholas Hud</span> American scientist

Nicholas V. Hud is a biophysicist, biochemist, origins of life researcher, and Regents’ Professor and Julius Brown Professor of Chemistry and Biochemistry at the Georgia Institute of Technology in Atlanta, Georgia.

<span class="mw-page-title-main">Eric Oldfield (academic)</span> British chemist

Eric Oldfield is a British chemist, the Harriet A. Harlin Professor of Chemistry and a professor of Biophysics at the University of Illinois at Urbana-Champaign. He is known for his work in nuclear magnetic resonance spectroscopy of lipids, proteins, and membranes; of inorganic solids; in computational chemistry, and in microbiology and parasitology. He has received a number of recognitions for his work, including the American Chemical Society's Award in Pure Chemistry, the Royal Society of Chemistry's Meldola Medal and the Biochemical Society's Colworth Medal, and he is a member of the American Association for the Advancement of Science, a Fellow of the Royal Society of Chemistry, and a Fellow of the American Physical Society.

References

  1. 1 2 "Juli Feigon". The Feigon Laboratory, UCLA. Retrieved 25 January 2016.
  2. 1 2 "New Helping Hands Award established – UCLA". web.archive.org. 22 May 2024. Retrieved 22 May 2024.
  3. "Feigon, Juli". UCLA Chemistry and Biochemistry. Retrieved 25 January 2016.
  4. "Juli Feigon". National Academy of Sciences. Retrieved 25 January 2016.
  5. "Juli Feigon to Receive 2019 BPS Founders Award". Biophysical Society. Biophysical Society. Retrieved 6 November 2018.
  6. Jiang, J; Wang, Y; Sušac, L; Chan, H; Basu, R; Zhou, ZH; Feigon, J (17 May 2018). "Structure of Telomerase with Telomeric DNA". Cell. 173 (5): 1179–1190.e13. doi:10.1016/j.cell.2018.04.038. PMC   5995583 . PMID   29775593.
  7. Jiang, J; Chan, H; Cash, DD; Miracco, EJ; Ogorzalek Loo, RR; Upton, HE; Cascio, D; O'Brien Johnson, R; Collins, K; Loo, JA; Zhou, ZH; Feigon, J (30 October 2015). "Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions". Science. 350 (6260): aab4070. doi:10.1126/science.aab4070. PMC   4687456 . PMID   26472759.
  8. Zhang, Q; Kim, NK; Feigon, J (20 December 2011). "Architecture of human telomerase RNA". Proceedings of the National Academy of Sciences of the United States of America. 108 (51): 20325–32. Bibcode:2011PNAS..10820325Z. doi: 10.1073/pnas.1100279108 . PMC   3251123 . PMID   21844345.
  9. Theimer, CA; Blois, CA; Feigon, J (4 March 2005). "Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function". Molecular Cell. 17 (5): 671–82. doi: 10.1016/j.molcel.2005.01.017 . PMID   15749017.
  10. He, Yao; Wang, Yaqiang; Liu, Baocheng; Helmling, Christina; Sušac, Lukas; Cheng, Ryan; Zhou, Z. Hong; Feigon, Juli (May 2021). "Structures of telomerase at several steps of telomere repeat synthesis". Nature. 593 (7859): 454–459. doi:10.1038/s41586-021-03529-9. ISSN   1476-4687. PMC   8857963 . PMID   33981033.