Julienne Stroeve

Last updated
Julienne Stroeve
Researcher Julienne Stroeve.jpg
NationalityAmerican
Alma mater University of Colorado at Boulder (Ph.D., 1996)
Scientific career
Fields Climatology
Institutions University College London, University of Manitoba, National Snow and Ice Data Center
Thesis Radiation climatology of the Greenland ice sheet  (1996)

Julienne Christine Stroeve is a polar climate scientist known for her research on remote sensing of ice and snow. She is Professor of Polar Observation & Modelling at the Centre for Polar Observation and Modelling, University College London, Senior Canada-150 Research Chair in Climate Forcing of Sea Ice at the University of Manitoba, and a senior research scientist at the National Snow and Ice Data Center within the Cooperative Institute for Research in Environmental Sciences (CIRES). [1] [2] [3] [4] She is also a member of the American Geophysical Union and an ISI highly cited researcher. [5]

Contents

Research

Professor Stroeve's research has covered Arctic climate change, sea ice decline, atmosphere-ocean ice interactions, remote sensing, and the impact of climate change on native communities. [6] Her work has focused on satellite retrievals of Arctic sea ice, and the implications of changing Arctic sea ice on Earth's climate. [6] [7]

Her research has shown that Arctic sea ice decline has happened much faster than models had predicted in recent decades and that humans may have been the cause of most of this decline. [8] She has also written about the current trend and future predictions of "darkening", or a reduction in albedo, of the Greenland ice sheet through an increase in the snow grain size, impurity content of snow, biological activity, exposure of bare ice, formation of melt pools, and the feedbacks associated with these factors. [9]

Julienne Stroeve was aboard the RV Polarstern in mid-winter 2019–2020 during the MOSAiC Expedition, where she conducted experiments to assess the accuracy of satellite radar systems used to map sea-ice thickness. [10]

Awards

Professor Stroeve was awarded the EGU 2020 Julia and Johannes Weertman Medal, for her 'fundamental contributions to improved satellite observations of sea ice, better understanding of causes of sea ice variability and change, and her compelling communication to the wider public'. [11] She is an ISI highly cited researcher, [12] regularly listed as one of Thomson Reuters most highly cited scientists, [4] and a Canada 150 Research Chair at the University of Manitoba. [13]

Related Research Articles

<span class="mw-page-title-main">Polar bear</span> Species of bear native to the Arctic

The polar bear is a large bear native to the Arctic and nearby areas. It is closely related to the brown bear, and the two species can interbreed. The polar bear is the largest extant species of bear and land carnivore, with adult males weighing 300–800 kg (660–1,760 lb). The species is sexually dimorphic, as adult females are much smaller. The polar bear is white- or yellowish-furred with black skin and a thick layer of fat. It is more slender than the brown bear, with a narrower skull, longer neck and lower shoulder hump. Its teeth are sharper and more adapted to cutting meat. The paws are large and allow the bear to walk on ice and paddle in the water.

<span class="mw-page-title-main">Cryosphere</span> Earths surface where water is frozen

The cryosphere is an umbrella term for those portions of Earth's surface where water is in solid form. This includes sea ice, ice on lakes or rivers, snow, glaciers, ice caps, ice sheets, and frozen ground. Thus, there is a overlap with the hydrosphere. The cryosphere is an integral part of the global climate system. It also has important feedbacks on the climate system. These feedbacks come from the cryosphere's influence on surface energy and moisture fluxes, clouds, the water cycle, atmospheric and oceanic circulation.

<span class="mw-page-title-main">Sea ice</span> Outcome of seawater as it freezes

Sea ice arises as seawater freezes. Because ice is less dense than water, it floats on the ocean's surface. Sea ice covers about 7% of the Earth's surface and about 12% of the world's oceans. Much of the world's sea ice is enclosed within the polar ice packs in the Earth's polar regions: the Arctic ice pack of the Arctic Ocean and the Antarctic ice pack of the Southern Ocean. Polar packs undergo a significant yearly cycling in surface extent, a natural process upon which depends the Arctic ecology, including the ocean's ecosystems. Due to the action of winds, currents and temperature fluctuations, sea ice is very dynamic, leading to a wide variety of ice types and features. Sea ice may be contrasted with icebergs, which are chunks of ice shelves or glaciers that calve into the ocean. Depending on location, sea ice expanses may also incorporate icebergs.

<span class="mw-page-title-main">Alfred Wegener Institute for Polar and Marine Research</span>

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research is located in Bremerhaven, Germany, and a member of the Helmholtz Association of German Research Centres. It conducts research in the Arctic, the Antarctic, and the high and mid latitude oceans. Additional research topics are: North Sea research, marine biological monitoring, and technical marine developments. The institute was founded in 1980 and is named after meteorologist, climatologist, and geologist Alfred Wegener.

<span class="mw-page-title-main">Polar vortex</span> Persistent cold-core low-pressure area that circles one of the poles

A circumpolar vortex, or simply polar vortex, is a large region of cold, rotating air; polar vortices encircle both of Earth's polar regions. Polar vortices also exist on other rotating, low-obliquity planetary bodies. The term polar vortex can be used to describe two distinct phenomena; the stratospheric polar vortex, and the tropospheric polar vortex. The stratospheric and tropospheric polar vortices both rotate in the direction of the Earth's spin, but they are distinct phenomena that have different sizes, structures, seasonal cycles, and impacts on weather.

<span class="mw-page-title-main">Arctic and Antarctic Research Institute</span> Russian research institute

The Arctic and Antarctic Research Institute, or AARI is the oldest and largest Russian research institute in the field of comprehensive studies of Arctic and Antarctica. It is located in Saint Petersburg.

<span class="mw-page-title-main">Pressure ridge (ice)</span> Linear accumulation of ice blocks resulting from the convergence between floes

A pressure ridge, when consisting of ice in an oceanic or coastal environment, is a linear pile-up of sea ice fragments formed in pack ice by accumulation in the convergence between floes.

<span class="mw-page-title-main">Arctic ecology</span> Study of the relationships between biotic and abiotic factors in the arctic

Arctic ecology is the scientific study of the relationships between biotic and abiotic factors in the arctic, the region north of the Arctic Circle. This region is characterized by two biomes: taiga and tundra. While the taiga has a more moderate climate and permits a diversity of both non-vascular and vascular plants, the tundra has a limited growing season and stressful growing conditions due to intense cold, low precipitation, and a lack of sunlight throughout the winter. Sensitive ecosystems exist throughout the Arctic region, which are being impacted dramatically by global warming.

<span class="mw-page-title-main">Climate change in the Arctic</span> Impacts of climate change on the Arctic

Due to climate change in the Arctic, this polar region is expected to become "profoundly different" by 2050. The speed of change is "among the highest in the world", with the rate of warming being 3-4 times faster than the global average. This warming has already resulted in the profound Arctic sea ice decline, the accelerating melting of the Greenland ice sheet and the thawing of the permafrost landscape. These ongoing transformations are expected to be irreversible for centuries or even millennia.

<span class="mw-page-title-main">Polar amplification</span> Climate effect

Polar amplification is the phenomenon that any change in the net radiation balance tends to produce a larger change in temperature near the poles than in the planetary average. This is commonly referred to as the ratio of polar warming to tropical warming. On a planet with an atmosphere that can restrict emission of longwave radiation to space, surface temperatures will be warmer than a simple planetary equilibrium temperature calculation would predict. Where the atmosphere or an extensive ocean is able to transport heat polewards, the poles will be warmer and equatorial regions cooler than their local net radiation balances would predict. The poles will experience the most cooling when the global-mean temperature is lower relative to a reference climate; alternatively, the poles will experience the greatest warming when the global-mean temperature is higher.

<span class="mw-page-title-main">Arctic Ocean</span> Ocean in the north polar region

The Arctic Ocean is the smallest and shallowest of the world's five oceanic divisions. It spans an area of approximately 14,060,000 km2 (5,430,000 sq mi) and is the coldest of the world's oceans. The International Hydrographic Organization (IHO) recognizes it as an ocean, although some oceanographers call it the Arctic Mediterranean Sea. It has also been described as an estuary of the Atlantic Ocean. It is also seen as the northernmost part of the all-encompassing world ocean.

<span class="mw-page-title-main">Measurement of sea ice</span> Records made for navigational safety and environmental monitoring

Measurement of sea ice is important for safety of navigation and for monitoring the environment, particularly the climate. Sea ice extent interacts with large climate patterns such as the North Atlantic oscillation and Atlantic Multidecadal Oscillation, to name just two, and influences climate in the rest of the globe.

<span class="mw-page-title-main">Effects of climate change on oceans</span>

There are many effects of climate change on oceans. One of the most important is an increase in ocean temperatures. More frequent marine heatwaves are linked to this. The rising temperature contributes to a rise in sea levels due to the expansion of water as it warms and the melting of ice sheets on land. Other effects on oceans include sea ice decline, reducing pH values and oxygen levels, as well as increased ocean stratification. All this can lead to changes of ocean currents, for example a weakening of the Atlantic meridional overturning circulation (AMOC). The main cause of these changes are the emissions of greenhouse gases from human activities, mainly burning of fossil fuels and deforestation. Carbon dioxide and methane are examples of greenhouse gases. The additional greenhouse effect leads to ocean warming because the ocean takes up most of the additional heat in the climate system. The ocean also absorbs some of the extra carbon dioxide that is in the atmosphere. This causes the pH value of the seawater to drop. Scientists estimate that the ocean absorbs about 25% of all human-caused CO2 emissions.

<span class="mw-page-title-main">Arctic sea ice decline</span> Sea ice loss in recent decades in the Arctic Ocean

Sea ice in the Arctic region has declined in recent decades in area and volume due to climate change. It has been melting more in summer than it refreezes in winter. Global warming, caused by greenhouse gas forcing is responsible for the decline in Arctic sea ice. The decline of sea ice in the Arctic has been accelerating during the early twenty-first century, with a decline rate of 4.7% per decade. Summertime sea ice will likely cease to exist sometime during the 21st century.

CICE is a computer model that simulates the growth, melt and movement of sea ice. It has been integrated into many coupled climate system models as well as global ocean and weather forecasting models and is often used as a tool in Arctic and Southern Ocean research. CICE development began in the mid-1990s by the United States Department of Energy (DOE), and it is currently maintained and developed by a group of institutions in North America and Europe known as the CICE Consortium. Its widespread use in Earth system science in part owes to the importance of sea ice in determining Earth's planetary albedo, the strength of the global thermohaline circulation in the world's oceans, and in providing surface boundary conditions for atmospheric circulation models, since sea ice occupies a significant proportion (4-6%) of Earth's surface. CICE is a type of cryospheric model.

<span class="mw-page-title-main">MOSAiC Expedition</span>

The Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition was a one-year-long expedition into the Central Arctic. For the first time a modern research icebreaker was able to operate in the direct vicinity of the North Pole year round, including the nearly half year long polar night during winter. In terms of the logistical challenges involved, the total number of participants, the number of participating countries, and the available budget, MOSAiC represents the largest Arctic expedition in history.

<span class="mw-page-title-main">Julia Schmale</span> German atmospheric chemist

Julia Yvonne Schmale is a German environmental scientist. She is a specialist in the micro-physical makeup of the atmosphere, in particular aerosols and their interaction with clouds. She is a professor at EPFL and the head of the Extreme Environments Research Laboratory (EERL). She is a participant in the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expeditions.

Marika Holland is a scientist at the National Center for Atmospheric Research known for her work on modeling sea ice and its role in the global climate.

<span class="mw-page-title-main">False bottom (sea ice)</span> Form of sea ice formed underwater between meltwater and seawater

False bottom is a form of sea ice that forms at the interface between meltwater and seawater via the process of double-diffusive convection of heat and salt.

<span class="mw-page-title-main">Matthew Shupe</span> American mathematician, chemist, meteorologist and climatologogist

Matthew David Shupe is an American mathematician, chemist, meteorologist and climatologogist.

References

  1. "Prof Julienne Stroeve". University College London. Archived from the original on 2017-12-30. Retrieved 2018-01-01.
  2. "University of Manitoba - Centre for Earth Observation Science - Research Chairs". umanitoba.ca. Retrieved 2019-10-17.
  3. "Julienne Stroeve". National Snow and Ice Data Center. Retrieved 2018-01-01.
  4. 1 2 "Professor Julienne Stroeve". Changing Arctic Ocean. Retrieved 2022-02-18.
  5. "Highly Cited Researchers List 2017 - Top Researchers Around the World". clarivate.com. Retrieved 2018-01-01.
  6. 1 2 "Prof Julienne Stroeve". UCL Earth Sciences. 2018-06-13. Retrieved 2022-02-18.
  7. "Julienne C. Stroeve". European Geosciences Union. Retrieved 2022-02-18.
  8. Vidal, John (2012-09-14). "The staggering decline of sea ice at the frontline of climate change". The Guardian. ISSN   0261-3077 . Retrieved 2018-01-01.
  9. Tedesco, Marco; Doherty, Sarah; Fettweis, X.; Alexander, Patrick; Jeyaratnam, Jeyavinoth; Stroeve, Julienne (2016). "The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100)". Columbia Academic Commons. 10: 477–496. doi:10.7916/D8ZG84R3.
  10. Nicolaus, M., Perovich, D. K., Spreen, G., Granskog, M. A., Albedyll, L. von, Angelopoulos, M., Anhaus, P., Arndt, S., Belter, H. J., Bessonov, V., Birnbaum, G., Brauchle, J., Calmer, R., Cardellach, E., Cheng, B., Clemens-Sewall, D., Dadic, R., Damm, E., Boer, G. de, Demir, O., Dethloff, K., Divine, D. V., Fong, A. A., Fons, S., Frey, M. M., Fuchs, N., Gabarró, C., Gerland, S., Goessling, H. F., Gradinger, R., Haapala, J., Haas, C., Hamilton, J., Hannula, H.-R., Hendricks, S., Herber, A., Heuzé, C., Hoppmann, M., Høyland, K. V., Huntemann, M., Hutchings, J. K., Hwang, B., Itkin, P., Jacobi, H.-W., Jaggi, M., Jutila, A., Kaleschke, L., Katlein, C., Kolabutin, N., Krampe, D., Kristensen, S. S., Krumpen, T., Kurtz, N., Lampert, A., Lange, B. A., Lei, R., Light, B., Linhardt, F., Liston, G. E., Loose, B., Macfarlane, A. R., Mahmud, M., Matero, I. O., Maus, S., Morgenstern, A., Naderpour, R., Nandan, V., Niubom, A., Oggier, M., Oppelt, N., Pätzold, F., Perron, C., Petrovsky, T., Pirazzini, R., Polashenski, C., Rabe, B., Raphael, I. A., Regnery, J., Rex, M., Ricker, R., Riemann-Campe, K., Rinke, A., Rohde, J., Salganik, E., Scharien, R. K., Schiller, M., Schneebeli, M., Semmling, M., Shimanchuk, E., Shupe, M. D., Smith, M. M., Smolyanitsky, V., Sokolov, V., Stanton, T., Stroeve, J., Thielke, L., Timofeeva, A., Tonboe, R. T., Tavri, A., Tsamados, M., Wagner, D. N., Watkins, D., Webster, M., Wendisch, M. (2022), "Overview of the MOSAiC expedition: Snow and sea ice", Elem Sci Anth, 10, University of California Press, doi: 10.1525/elementa.2021.000046 , hdl: 10037/25103
  11. "Julienne C. Stroeve". European Geosciences Union. Retrieved 2022-02-18.
  12. "Julienne Stroeve's Publons profile". publons.com. Retrieved 2022-02-18.
  13. "Julienne Stroeve". ARCUS. Retrieved 2022-02-18.