Jurkat cells

Last updated

Jurkat cells are an immortalized line of human T lymphocyte cells that are used to study acute T cell leukemia, T cell signaling, and the expression of various chemokine receptors susceptible to viral entry, particularly HIV. [1] Jurkat cells can produce interleukin 2, and are used in research involving the susceptibility of cancers to drugs and radiation.

Contents

History

The Jurkat cell line (originally called JM) was established in the mid-1970s from the peripheral blood of a 14-year-old boy with T cell leukemia. [2] [3] Different derivatives of the Jurkat cell line that have been mutated to lack certain genes can now be obtained from cell culture banks. [4]

Examples of derivatives

Cell line contamination

Jurkat J6 cells have been found to produce a xenotropic murine leukemia virus (X-MLV) (referred to as XMRV) that could potentially affect experimental outcomes. There is no evidence that this virus can infect humans. This infection may also change the virulence and tropism of the virus by way of phenotypic mixing and/or recombination. [5]

Related Research Articles

Cytotoxic T cell T cell that kills infected, damaged or cancerous cells

A cytotoxic T cell (also known as TC, cytotoxic T lymphocyte, CTL, T-killer cell, cytolytic T cell, CD8+ T-cell or killer T cell) is a T lymphocyte (a type of white blood cell) that kills cancer cells, cells that are infected by intracellular pathogens (such as viruses or bacteria), or cells that are damaged in other ways.

Superantigen

Superantigens (SAgs) are a class of antigens that result in excessive activation of the immune system. Specifically it causes non-specific activation of T-cells resulting in polyclonal T cell activation and massive cytokine release. SAgs are produced by some pathogenic viruses and bacteria most likely as a defense mechanism against the immune system. Compared to a normal antigen-induced T-cell response where 0.0001-0.001% of the body's T-cells are activated, these SAgs are capable of activating up to 20% of the body's T-cells. Furthermore, Anti-CD3 and Anti-CD28 antibodies (CD28-SuperMAB) have also shown to be highly potent superantigens.

CD4 Marker on immune cells

In molecular biology, CD4 is a glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). CD4 is found on the surface of immune cells such as T helper cells, monocytes, macrophages, and dendritic cells. It was discovered in the late 1970s and was originally known as leu-3 and T4 before being named CD4 in 1984. In humans, the CD4 protein is encoded by the CD4 gene.

T-cell receptor Protein complex on the surface of T cells that recognises antigens

The T-cell receptor (TCR) is a protein complex found on the surface of T cells, or T lymphocytes, that is responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. The binding between TCR and antigen peptides is of relatively low affinity and is degenerate: that is, many TCRs recognize the same antigen peptide and many antigen peptides are recognized by the same TCR.

CD8 is a transmembrane glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). Along with the TCR, the CD8 co-receptor plays a role in T cell signaling and aiding with cytotoxic T cell-antigen interactions.

Common gamma chain Protein-coding gene in the species Homo sapiens

The common gamma chainc), also known as interleukin-2 receptor subunit gamma or IL-2RG, is a cytokine receptor sub-unit that is common to the receptor complexes for at least six different interleukin receptors: IL-2, IL-4, IL-7, IL-9, IL-15 and interleukin-21 receptor. The γc glycoprotein is a member of the type I cytokine receptor family expressed on most lymphocyte populations, and its gene is found on the X-chromosome of mammals.

Lck Lymphocyte protein

Lck is a 56 kDa protein that is found inside specialized cells of the immune system called lymphocytes. The Lck is a member of Src kinase family (SFK), it is important for the activation of the T-cell receptor signaling in both naive T cells and effector T cells. The role of the Lck is less prominent in the activation or in the maintenance of memory CD8 T cells in comparison to CD4 T cells. In addition, the role of the lck varies among the memory T cells subsets. It seems that in mice, in the effector memory T cells (TEM) population, more than 50% of lck is present in a constitutively active conformation, whereas, only less than 20% of lck is present as active form of lck. These differences are due to differential regulation by SH2 domain–containing phosphatase-1 (Shp-1) and C-terminal Src kinase.

ZAP70

ZAP-70 is a protein normally expressed near the surface membrane of lymphocytes. It is most prominently known to be recruited upon antigen binding to the T cell receptor (TCR), and it plays a critical role in T cell signaling.

Tyrosine-protein kinase SYK

Tyrosine-protein kinase SYK, also known as spleen tyrosine kinase, is an enzyme which in humans is encoded by the SYK gene.

Linker for activation of T cells

The Linker for activation of T cells, also known as linker of activated T cells or LAT, is a protein involved in the T-cell antigen receptor signal transduction pathway which in humans is encoded by the LAT gene. Alternative splicing results in multiple transcript variants encoding different isoforms.

Janus kinase 3 Mammalian protein found in Homo sapiens

Tyrosine-protein kinase JAK3 is a tyrosine kinase enzyme that in humans is encoded by the JAK3 gene.

T-cell surface glycoprotein CD3 zeta chain

T-cell surface glycoprotein CD3 zeta chain also known as T-cell receptor T3 zeta chain or CD247 is a protein that in humans is encoded by the CD247 gene.

CD3G

T-cell surface glycoprotein CD3 gamma chain is a protein that in humans is encoded by the CD3G gene.

T-cell surface glycoprotein CD3 epsilon chain

CD3e molecule, epsilon also known as CD3E is a polypeptide which in humans is encoded by the CD3E gene which resides on chromosome 11.

PTPN22

Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a cytoplasmatic protein encoded by gene PTPN22 and a member of PEST family of protein tyrosine phosphatases. This protein is also called "PEST-domain Enriched Phosphatase" ("PEP") or "Lymphoid phosphatase" ("LYP"). The name LYP is used strictly for the human protein encoded by PTPN22, but the name PEP is used only for its mouse homolog. However, both proteins have similar biological functions and show 70% identity in amino acid sequence. PTPN22 functions as a negative regulator of T cell receptor (TCR) signaling, which maintains homeostasis of T cell compartment.

T cell receptor gamma locus is a protein that in humans is encoded by the TRG gene, also known as TCRG or TRG@. It contributes the gamma (γ) chain to the larger TCR protein.

T cell receptor delta locus, also known as TCRD or TRD@, is a protein that in humans is encoded by the TRD gene. It contributes the delta (δ) chain to the larger TCR protein.

IL2RB

Interleukin-2 receptor subunit beta is a protein that in humans is encoded by the IL2RB gene. Also known as CD122; IL15RB; P70-75.

Nef (protein)

Nef is a small 27-35 kDa myristoylated protein encoded by primate lentiviruses. These include Human Immunodeficiency Viruses and Simian Immunodeficiency Virus (SIV). Nef localizes primarily to the cytoplasm but also partially to the Plasma membrane (PM) and is one of many pathogen-expressed proteins, known as virulence factors, which function to manipulate the host's cellular machinery and thus allow infection, survival or replication of the pathogen. Nef stands for "Negative Factor" and although it is often considered indispensable for HIV-1 replication, in infected hosts the viral protein markedly elevates viral titers.

The NSG mouse is a brand of immunodeficient laboratory mice, developed and marketed by Jackson Laboratory, which carries the strain NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ. NSG branded mice are among the most immunodeficient described to date. NSG branded mice lack mature T cells, B cells, and natural killer (NK) cells. NSG branded mice are also deficient in multiple cytokine signaling pathways, and they have many defects in innate immunity. The compound immunodeficiencies in NSG branded mice permit the engraftment of a wide range of primary human cells, and enable sophisticated modeling of many areas of human biology and disease. NSG branded mice were developed in the laboratory of Dr. Leonard Shultz at Jackson Laboratory, which owns the NSG trade mark.

References

  1. Abraham, Robert; Weiss, Arthur (2004). "Jurkat T cells and development of the T-cell receptor signalling paradigm". Nature. 4 (4): 301–308. doi:10.1038/nri1330. PMID   15057788.
  2. Schwenk, Hans-Ulrich; Schneider, Ulrich (1975). "Cell cycle dependency of a T-cell marker on lymphoblasts". Blut Zeitschrift für die Gesamte Blutforschung. 31 (5): 299–306. doi:10.1007/BF01634146. ISSN   0006-5242.
  3. Schneider U, Schwenk H, Bornkamm G (1977). "Characterization of EBV-genome negative "null" and "T" cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma". Int J Cancer. 19 (5): 621–6. doi:10.1002/ijc.2910190505. PMID   68013.
  4. American Type Culture Collection (ATCC)
  5. Takeuchi, Y; McClure, MO; Pizzato, M (Dec 2008). "Identification of Gammaretroviruses Constitutively Released from Cell Lines Used for Human Immunodeficiency Virus Research". Journal of Virology. 82 (24): 12585–12588. doi:10.1128/JVI.01726-08. PMC   2593302 . PMID   18842727.