Kansa method

Last updated

The Kansa method is a computer method used to solve partial differential equations. Its main advantage is it is very easy to understand and program on a computer. It is much less complicated than the finite element method. Another advantage is it works well on multi variable problems. The finite element method is complicated when working with more than 3 space variables and time.

Contents

The Kansa Method can be explained by an analogy to a basketball court with many light bulbs suspended all across the ceiling. You solve for the brightness of each bulb so that the desired light intensity directly on the floor of the basketball court under each bulb solves the differential equation at that point. So if the basketball court has 100 bulbs suspended over it; the light intensity at any point on the floor of the basketball court approaches a light intensity that approximately solves the differential equation at any location on the floor of the basketball court. A simple computer program can solve by iteration for the brightness of each bulb, which makes this method easy to program. This method does not need weighted residuals (Galerkin), integration, or advanced mathematics.

E. J. Kansa in very early 1990s made the first attempt to extend radial basis function (RBF), which was then quite popular in scattered data processing and function approximation, to the solution of partial differential equations in the strong-form collocation formulation. His RBF collocation approach is inherently meshless, easy-to-program, and mathematically very simple to learn. Before long, this method became known as the Kansa method in the academic community.

Because the RBF uses the one-dimensional Euclidean distance variable irrespective of dimensionality, the Kansa method is independent of dimensionality and geometric complexity of problems of interest. The method is a domain-type numerical technique in the sense that the problem is discretized not only on the boundary to satisfy boundary conditions but also inside domain to satisfy governing equation.

In contrast, there is another type of RBF numerical methods, called boundary-type RBF collocation method, such as the method of fundamental solution, boundary knot method, singular boundary method, boundary particle method, and regularized meshless method, in which the basis functions, also known as kernel function, satisfy the governing equation and are often fundamental solution or general solution of governing equation. Consequently, only boundary discretization is required.

Since the RBF in the Kansa method does not necessarily satisfy the governing equation, one has more freedom to choose a RBF. The most popular RBF in the Kansa method is the multiquadric (MQ), which usually shows spectral accuracy if an appropriate shape parameter is chosen.

Description

The Kansa method, also called modified MQ scheme or MQ collocation method, originated from the well-known MQ interpolation. The efficiency and applicability of this method have been verified in a wide range of problems. Compared with the boundary-type RBF collocation methods, the Kansa method has wider applicability to problems whose fundamental and general solutions are not available, e.g., varying coefficient and nonlinear problems.

Formulation

Let d-dimensional physical domain and consider the following boundary value problem (BVP)

where L represents a differential operator and d is the dimensionality of the problem, denote the Dirichlet and Neumann boundaries, respectively, and . The Kansa method approximates the desired function by a linear combination of the RBF in the form:

where is the coefficients to be determined, denotes the RBF such as the MQ.

In order to guarantee the uniqueness of the solution, a polynomial term may be added as follows:

where is the polynomial. The RBF interpolation (4) and (5) are both often used in practice. Mathematicians prefer the latter for its rigorous and solid theoretical foundation, while engineering users often employ the former since it is easier and simpler and produces the sound results in the majority of cases. Substituting Eq. (4) or (5) into Eqs. (1–3) yields the resulting algebraic equation system:

where

After expansion coefficients are evaluated, the desired function can be calculated from Eq. (4) or (5).

History and recent developments

Numerical solutions of PDEs are usually obtained through the finite difference method (FDM), the finite element method (FEM) or boundary element method (BEM). It is known that the FDM is difficult to model an irregular domain for the reason that it usually requires a rectangular grid system. Although the FEM can accommodate a more flexible framework, the meshing and remeshing are not trivial. The BEM is an alternative method in some engineering problems, such as inverse, unbounded domain, and thin-walled structure problems. However, its applications are largely limited by the availability of the fundamental solution of the governing equation.

In the recent several decades, “meshless” or “element-free” methods attract great attention. The driving force behind the scene is that the mesh-based methods such as the standard FEM and BEM require prohibitively computational effort in handling high-dimensional, moving, and complex-shaped boundary problems. The Kansa method [1] [2] directly collocates the RBFs, especially the MQ, at the nodes without the need of mesh or elements and therefore is an inherently truly meshless method.

Despite great effort, the rigorous mathematical proof of the solvability of the Kansa method is still missing. [3] In addition, the mixed boundary conditions also destroy the symmetry of its interpolation matrix. Refs. [4] [5] propose the symmetric Hermite RBF collocation scheme with sound mathematical analysis of solvability. One common issue in the Kansa method and symmetric Hermite method, however, is that the numerical solutions at nodes adjacent to boundary deteriorate by one to two orders of magnitude compared with those in central region. The PDE collocation on the boundary (PDECB) [6] effectively remove this shortcoming. However, this strategy requires an additional set of nodes inside or outside of the domain adjacent to the boundary. The arbitrary placing of these additional nodes gives rise to troublesome issues in the simulation of complex and multiply-connected domain problems. The PDECB also lacks explicit theoretical endorsement. In fact, a similar strategy has also been proposed, [7] which collocates both governing and boundary equations on the same boundary nodes. However, the method is unsymmetrical and still lacks explicit theoretical foundation. By using the Green second identity, the modified Kansa method [8] [9] is devised to remedy all weaknesses aforementioned. For the MQ, its shape parameter largely determines its interpolation error. There exist a number of mathematical theories concerning the family of multiquadric radial basis functions and providing some suggestions on the choice of the shape parameter. [10] [11] [12] [13]

The Kansa method are widely been applied in computational sciences. In, [1] the Kansa method is employed to address the parabolic, hyperbolic and elliptic partial differential equations. Kansa method has recently been extended to various ordinary and PDEs including the bi-phasic and triphasic mixture models of tissue engineering problems, [14] [15] 1D nonlinear Burger's equation [16] with shock wave, shallow water equations [17] for tide and current simulation, heat transfer problems, [18] free boundary problems, [19] and fractional diffusion equations. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

The sine-Gordon equation is a second-order nonlinear partial differential equation for a function dependent on two variables typically denoted and , involving the wave operator and the sine of .

Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances.

In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, Shinzo Watanabe, I. Shigekawa, and so on finally completed the foundations.

<span class="mw-page-title-main">Level-set method</span> Conceptual framework used in numerical analysis of surfaces and shapes

The Level-set method (LSM) is a conceptual framework for using level sets as a tool for numerical analysis of surfaces and shapes. LSM can perform numerical computations involving curves and surfaces on a fixed Cartesian grid without having to parameterize these objects. LSM makes it easier to perform computations on shapes with sharp corners and shapes that change topology. These characteristics make LSM effective for modeling objects that vary in time, such as an airbag inflating or a drop of oil floating in water.

In mathematics, and particularly in potential theory, Dirichlet's principle is the assumption that the minimizer of a certain energy functional is a solution to Poisson's equation.

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

In mathematics a radial basis function (RBF) is a real-valued function whose value depends only on the distance between the input and some fixed point, either the origin, so that , or some other fixed point , called a center, so that . Any function that satisfies the property is a radial function. The distance is usually Euclidean distance, although other metrics are sometimes used. They are often used as a collection which forms a basis for some function space of interest, hence the name.

<span class="mw-page-title-main">Flow (mathematics)</span> Motion of particles in a fluid

In mathematics, a flow formalizes the idea of the motion of particles in a fluid. Flows are ubiquitous in science, including engineering and physics. The notion of flow is basic to the study of ordinary differential equations. Informally, a flow may be viewed as a continuous motion of points over time. More formally, a flow is a group action of the real numbers on a set.

In numerical analysis and computational fluid dynamics, Godunov's theorem — also known as Godunov's order barrier theorem — is a mathematical theorem important in the development of the theory of high-resolution schemes for the numerical solution of partial differential equations.

<span class="mw-page-title-main">Elliptic boundary value problem</span>

In mathematics, an elliptic boundary value problem is a special kind of boundary value problem which can be thought of as the steady state of an evolution problem. For example, the Dirichlet problem for the Laplacian gives the eventual distribution of heat in a room several hours after the heating is turned on.

In applied mathematics, discontinuous Galerkin methods (DG methods) form a class of numerical methods for solving differential equations. They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems arising from a wide range of applications. DG methods have in particular received considerable interest for problems with a dominant first-order part, e.g. in electrodynamics, fluid mechanics and plasma physics. Indeed, the solutions of such problems may involve strong gradients (and even discontinuities) so that classical finite element methods fail, while finite volume methods are restricted to low order approximations.

In the finite element method for the numerical solution of elliptic partial differential equations, the stiffness matrix is a matrix that represents the system of linear equations that must be solved in order to ascertain an approximate solution to the differential equation.

In the mathematical study of harmonic functions, the Perron method, also known as the method of subharmonic functions, is a technique introduced by Oskar Perron for the solution of the Dirichlet problem for Laplace's equation. The Perron method works by finding the largest subharmonic function with boundary values below the desired values; the "Perron solution" coincides with the actual solution of the Dirichlet problem if the problem is soluble.

In mathematics, a free boundary problem is a partial differential equation to be solved for both an unknown function and an unknown domain . The segment of the boundary of which is not known at the outset of the problem is the free boundary.

In numerical mathematics, hierarchical matrices (H-matrices) are used as data-sparse approximations of non-sparse matrices. While a sparse matrix of dimension can be represented efficiently in units of storage by storing only its non-zero entries, a non-sparse matrix would require units of storage, and using this type of matrices for large problems would therefore be prohibitively expensive in terms of storage and computing time. Hierarchical matrices provide an approximation requiring only units of storage, where is a parameter controlling the accuracy of the approximation. In typical applications, e.g., when discretizing integral equations, preconditioning the resulting systems of linear equations, or solving elliptic partial differential equations, a rank proportional to with a small constant is sufficient to ensure an accuracy of . Compared to many other data-sparse representations of non-sparse matrices, hierarchical matrices offer a major advantage: the results of matrix arithmetic operations like matrix multiplication, factorization or inversion can be approximated in operations, where

In scientific computation and simulation, the method of fundamental solutions (MFS) is a technique for solving partial differential equations based on using the fundamental solution as a basis function. The MFS was developed to overcome the major drawbacks in the boundary element method (BEM) which also uses the fundamental solution to satisfy the governing equation. Consequently, both the MFS and the BEM are of a boundary discretization numerical technique and reduce the computational complexity by one dimensionality and have particular edge over the domain-type numerical techniques such as the finite element and finite volume methods on the solution of infinite domain, thin-walled structures, and inverse problems.

In numerical mathematics, the boundary knot method (BKM) is proposed as an alternative boundary-type meshfree distance function collocation scheme.

The generalized-strain mesh-free (GSMF) formulation is a local meshfree method in the field of numerical analysis, completely integration free, working as a weighted-residual weak-form collocation. This method was first presented by Oliveira and Portela (2016), in order to further improve the computational efficiency of meshfree methods in numerical analysis. Local meshfree methods are derived through a weighted-residual formulation which leads to a local weak form that is the well known work theorem of the theory of structures. In an arbitrary local region, the work theorem establishes an energy relationship between a statically-admissible stress field and an independent kinematically-admissible strain field. Based on the independence of these two fields, this formulation results in a local form of the work theorem that is reduced to regular boundary terms only, integration-free and free of volumetric locking.

Phase reduction is a method used to reduce a multi-dimensional dynamical equation describing a nonlinear limit cycle oscillator into a one-dimensional phase equation. Many phenomena in our world such as chemical reactions, electric circuits, mechanical vibrations, cardiac cells, and spiking neurons are examples of rhythmic phenomena, and can be considered as nonlinear limit cycle oscillators.

References

  1. 1 2 E. J. Kansa, "Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations," Computers & Mathematics with Applications, vol. 19, pp. 147–161, 1990.
  2. J. Li, et al., "A comparison of efficiency and error convergence of multiquadric collocation method and finite element method," Engineering Analysis with Boundary Elements, vol. 27, pp. 251–257, 2003.
  3. Y. C. Hon and R. Schaback, "On unsymmetric collocation by radial basis functions," Applied Mathematics and Computation, vol. 119, pp. 177–186, 2001.
  4. C. Franke and R. Schaback, "Solving partial differential equations by collocation using radial basis functions," Applied Mathematics and Computation, vol. 93, pp. 73–82, 1998.
  5. G. E. Fasshauer, "Solving Partial Differential Equations by Collocation," 1996, p. 1.
  6. A. I. Fedoseyev, et al., "Improved multiquadric method for elliptic partial differential equations via PDE collocation on the boundary," Computers & Mathematics with Applications, vol. 43, pp. 439–455, 2002.
  7. X. Zhang, et al., "Meshless methods based on collocation with radial basis functions," Computational Mechanics, vol. 26, pp. 333–343, 2000.
  8. W. Chen, "New RBF Collocation Methods and Kernel RBF with Applications: Meshfree Methods for Partial Differential Equations." vol. 26, M. Griebel and M. A. Schweitzer, Eds., ed: Springer Berlin Heidelberg, 2002, pp. 75–86.
  9. W. Chen and M. Tanaka, "New insights in boundary-only and domain-type RBF methods," Arxiv preprint cs/0207017, 2002.
  10. R. L. Hardy, "Multiquadric Equations of Topography and Other Irregular Surfaces," J. Geophys. Res., vol. 76, pp. 1905–1915, 1971.
  11. R. Franke, "Scattered Data Interpolation: Tests of Some Method," Mathematics of Computation, vol. 38, pp. 181-200, 1982.
  12. E. J. Kansa and R. E. Carlson, "Improved accuracy of multiquadric interpolation using variable shape parameters," Computers & Mathematics with Applications, vol. 24, pp. 99–120, 1992.
  13. C. A.H.-D, "Multiquadric and its shape parameter-A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation," Engineering Analysis with Boundary Elements, vol. 36, pp. 220–239, 2012.
  14. Y. C. Hon, et al., "Multiquadric method for the numerical solution of a biphasic mixture model," Applied Mathematics and Computation, vol. 88, pp. 153–175, 1997.
  15. Y. C. Hon, et al., "A new formulation and computation of the triphasic model for mechano-electrochemical mixtures," Computational Mechanics, vol. 24, pp. 155–165, 1999.
  16. Y. C. Hon and X. Z. Mao, "An efficient numerical scheme for Burgers' equation," Applied Mathematics and Computation, vol. 95, pp. 37–50, 1998.
  17. Y.-C. Hon, et al., "Multiquadric Solution for Shallow Water Equations," Journal of Hydraulic Engineering, vol. 125, pp. 524–533, 1999.
  18. M. Zerroukat, et al., "A numerical method for heat transfer problems using collocation and radial basis functions," International journal for numerical methods in engineering, vol. 42, pp. 1263–1278, 1998.
  19. J. Perko, et al., "A polygon-free numerical solution of steady natural convection in solid-liquid systems," Computational Modelling of Moving and Free Boundary Problems, pp. 111–122, 2001.
  20. W. Chen, et al., "Fractional diffusion equations by the Kansa method," Computers & Mathematics with Applications, vol. 59, pp. 1614–1620, 2010.