Kathryn Toghill

Last updated
Kathryn Ellen Toghill
Alma mater Swansea University
University of Oxford
Scientific career
Institutions University of Waterloo
Lancaster University
École Polytechnique Fédérale de Lausanne
Thesis Metal modified boron doped diamond electrodes and their use in electroanalysis  (2011)
Academic advisors Linda Nazar

Kathryn Toghill is a British chemist who is Professor of Sustainable Electrochemistry at Lancaster University. Her research considers the development of low-cost energy storage systems, with a particular focus on redox flow batteries.

Contents

Early life and education

Toghill was an undergraduate student at Swansea University. She spent a year at the University of Waterloo, where she worked with Linda Nazar on new cathodes for batteries. [1] Her undergraduate research with Nazar was published in Nature Materials . [1] After earning her doctorate, Toghill moved to the University of Oxford, where she developed modified boron doped diamond electrodes and investigated their applications in analysis. [2] At Oxford Toghill designed an electrochemical atomic force microscopy cell. [3] Toghill moved to the École Polytechnique Fédérale de Lausanne, where she worked with Hubert Girault.[ citation needed ] At EPFL, she developed capabilities in hybrid energy storage, investigating batteries capable of conventional operation and hydrogen evolution. [4]

Research and career

In 2014, Toghill joined the faculty at Lancaster University. Her research considers low-cost electrochemical energy storage systems including redox flow batteries. This involves the design and synthesis of new batteries and flow cells, electrode materials, as well as the development of strategies for green hydrogen and water valorisation.[ citation needed ]

In 2022, Toghill was awarded funding from Horizon Europe to develop dual circuit flow batteries for value added chemical production. [5] Dual circuit redox flow batteries can function both as a conventional battery and as a hydrogen fuel cell. [6]

Selected publications

Related Research Articles

<span class="mw-page-title-main">Electrochemistry</span> Branch of chemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.

<span class="mw-page-title-main">Electrochemical cell</span> Electro-chemical device

An electrochemical cell is a device that generates electrical energy from chemical reactions. Electrical energy can also be applied to these cells to cause chemical reactions to occur. Electrochemical cells that generate an electric current are called voltaic or galvanic cells and those that generate chemical reactions, via electrolysis for example, are called electrolytic cells.

<span class="mw-page-title-main">Galvanic cell</span> Electrochemical device

A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous oxidation–reduction reactions. A common apparatus generally consists of two different metals, each immersed in separate beakers containing their respective metal ions in solution that are connected by a salt bridge or separated by a porous membrane.

<span class="mw-page-title-main">Electrolytic cell</span> Cell that uses electrical energy to drive a non-spontaneous redox reaction

An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would otherwise not occur. The external energy source is a voltage applied between the cell's two electrodes; an anode and a cathode, which are immersed in an electrolyte solution. This is in contrast to a galvanic cell, which itself is a source of electrical energy and the foundation of a battery. The net reaction taking place in a galvanic cell is a spontaneous reaction, i.e., the Gibbs free energy remains -ve, while the net reaction taking place in an electrolytic cell is the reverse of this spontaneous reaction, i.e., the Gibbs free energy is +ve.

In electrochemistry, standard electrode potential, or , is a measure of the reducing power of any element or compound. The IUPAC "Gold Book" defines it as; "the value of the standard emf of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode".

A primary battery or primary cell is a battery that is designed to be used once and discarded, and not recharged with electricity and reused like a secondary cell. In general, the electrochemical reaction occurring in the cell is not reversible, rendering the cell unrechargeable. As a primary cell is used, chemical reactions in the battery use up the chemicals that generate the power; when they are gone, the battery stops producing electricity. In contrast, in a secondary cell, the reaction can be reversed by running a current into the cell with a battery charger to recharge it, regenerating the chemical reactants. Primary cells are made in a range of standard sizes to power small household appliances such as flashlights and portable radios.

<span class="mw-page-title-main">Vanadium redox battery</span> Type of rechargeable flow battery

The vanadium redox battery (VRB), also known as the vanadium flow battery (VFB) or vanadium redox flow battery (VRFB), is a type of rechargeable flow battery. It employs vanadium ions as charge carriers. The battery uses vanadium's ability to exist in a solution in four different oxidation states to make a battery with a single electroactive element instead of two. For several reasons, including their relative bulkiness, vanadium batteries are typically used for grid energy storage, i.e., attached to power plants/electrical grids.

<span class="mw-page-title-main">Flow battery</span> Type of electrochemical cell

A flow battery, or redox flow battery, is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides and in opposite direction of a membrane. Ion transfer inside the cell occurs through the membrane while both liquids circulate in their own respective space. Cell voltage is chemically determined by the Nernst equation and ranges, in practical applications, from 1.0 to 2.43 volts. The energy capacity is a function of the electrolyte volume and the power is a function of the surface area of the electrodes.

The polysulfide–bromine battery, is a type of rechargeable electric battery, which stores electric energy in liquids, such as water-based solutions of two salts: sodium bromide and sodium polysulfide. It is an example and type of redox (reduction–oxidation) flow battery.

An enzymatic biofuel cell is a specific type of fuel cell that uses enzymes as a catalyst to oxidize its fuel, rather than precious metals. Enzymatic biofuel cells, while currently confined to research facilities, are widely prized for the promise they hold in terms of their relatively inexpensive components and fuels, as well as a potential power source for bionic implants.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

<span class="mw-page-title-main">Zinc–cerium battery</span>

Zinc–cerium batteries are a type of redox flow battery first developed by Plurion Inc. (UK) during the 2000s. In this rechargeable battery, both negative zinc and positive cerium electrolytes are circulated though an electrochemical flow reactor during the operation and stored in two separated reservoirs. Negative and positive electrolyte compartments in the electrochemical reactor are separated by a cation-exchange membrane, usually Nafion (DuPont). The Ce(III)/Ce(IV) and Zn(II)/Zn redox reactions take place at the positive and negative electrodes, respectively. Since zinc is electroplated during charge at the negative electrode this system is classified as a hybrid flow battery. Unlike in zinc–bromine and zinc–chlorine redox flow batteries, no condensation device is needed to dissolve halogen gases. The reagents used in the zinc-cerium system are considerably less expensive than those used in the vanadium flow battery.

A hydrogen–bromine battery is a rechargeable flow battery in which hydrogen bromide (HBr) serves as the system’s electrolyte. During the charge cycle, as power flows into the stack, H2 is generated and stored in a separate tank, the other product of the chemical reaction is HBr3 which accumulates in the electrolyte. During the discharge cycle the H2 is combined again with the HBr3 and the system returns to its initial stage with a full tank of HBr. The electrolyte suffers no degradation during the process and the system is self contained with no emissions.

A lithium-ion flow battery is a flow battery that uses a form of lightweight lithium as its charge carrier. The flow battery stores energy separately from its system for discharging. The amount of energy it can store is determined by tank size; its power density is determined by the size of the reaction chamber.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and cost.

<span class="mw-page-title-main">Hubert Girault</span> Swiss scientist, specialist in physical and analytical electrochemistry

Hubert Girault (born 13 February 1957 in Saint-Maur-des-Fossés, France) is a Swiss chemist and is Emeritus Professor at the École Polytechnique Fédérale de Lausanne (1992-2022). He was the director of the Laboratoire d'Electrochimie Physique et Analytique, with expertise in electrochemistry at soft interfaces, Lab-on-a-Chip techniques, bio-analytical chemistry and mass-spectrometry, artificial water splitting, CO2 reduction, and redox flow batteries.

<span class="mw-page-title-main">Semi-solid flow battery</span>

A semi-solid flow battery is a type of flow battery using solid battery active materials or involving solid species in the energy carrying fluid. A research team in MIT proposed this concept using lithium-ion battery materials. In such a system, both positive (cathode) and negative electrode (anode) consist of active material particles with carbon black suspended in liquid electrolyte. Active material suspensions are stored in two energy storage tanks. The suspensions are pumped into the electrochemical reaction cell when charging and discharging. This design takes advantage of both the designing flexibility of flow batteries and the high energy density active materials of lithium-ion batteries.

<span class="mw-page-title-main">George Crabtree</span> American physicist (1944–2023)

George William Crabtree was an American physicist known for his highly cited research on superconducting materials and, since 2012, for his directorship of the Joint Center for Energy Storage Research (JCESR) at Argonne National Laboratory.

Linda Faye Nazar is a Senior Canada Research Chair in Solid State Materials and Distinguished Research Professor of Chemistry at the University of Waterloo. She develops materials for electrochemical energy storage and conversion. Nazar demonstrated that interwoven composites could be used to improve the energy density of lithium–sulphur batteries. She was awarded the 2019 Chemical Institute of Canada Medal.

The Iron Redox Flow Battery (IRFB), also known as Iron Salt Battery (ISB), stores and releases energy through the electrochemical reaction of iron salt. This type of battery belongs to the class of redox-flow batteries (RFB), which are alternative solutions to Lithium-Ion Batteries (LIB) for stationary applications. The IRFB can achieve up to 70% round trip energy efficiency. In comparison, other long duration storage technologies such as pumped hydro energy storage provide around 80% round trip energy efficiency.

References

  1. 1 2 Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. (October 2007). "A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries". Nature Materials. 6 (10): 749–753. doi:10.1038/nmat2007. ISSN   1476-4660.
  2. "Metal modified boron doped diamond electrodes and their use in electroanalysis". WorldCat.org. Retrieved 2023-04-07.
  3. "The Toghill Group - Members". sites.google.com. Retrieved 2023-04-08.
  4. Amstutz, Véronique; Toghill, Kathryn E.; Powlesland, Francis; Vrubel, Heron; Comninellis, Christos; Hu, Xile; Girault, Hubert H. (2014-06-19). "Renewable hydrogen generation from a dual-circuit redox flow battery". Energy & Environmental Science. 7 (7): 2350–2358. doi:10.1039/C4EE00098F. ISSN   1754-5706.
  5. "Dual circuit flow battery for hydrogen and value added chemical production" . Retrieved 2023-04-08.
  6. Peljo, Pekka; Vrubel, Heron; Amstutz, Véronique; Pandard, Justine; Morgado, Joana; Santasalo-Aarnio, Annukka; Lloyd, David; Gumy, Frédéric; Dennison, C. R.; Toghill, Kathryn E.; Girault, Hubert H. (2016-03-16). "All-vanadium dual circuit redox flow battery for renewable hydrogen generation and desulfurisation". Green Chemistry. 18 (6): 1785–1797. doi:10.1039/C5GC02196K. ISSN   1463-9270.