Katydid sequence

Last updated

The Katydid sequence is a sequence of numbers first defined in Clifford A. Pickover's book Wonders of Numbers (2001).

Contents

Description

A Katydid sequence is the smallest sequence of integers that can be reached from 1 by a sequence of the two operations n  2n + 2 and 7n + 7 (in any order). [1] For instance, applying the first operation to 1 produces the number 4, and applying the second operation to 4 produces the number 35, both of which are in the sequence.

The first 10 elements of the sequence are: [2]

1, 4, 10, 14, 22, 30, 35, 46, 62, 72.

Repetitions

Pickover asked whether there exist numbers that can be reached by more than one sequence of operations. [1] The answer is yes. For instance, 1814526 can be reached by the two sequences 1, 4, 10, 22, 46, 329, 660, 4627, 9256, 18514, 37030, 259217, 1814526 and 1, 14, 30, 62, 441, 884, 1770, 3542, 7086, 14174, 28350, 56702, 113406, 226814, 453630, 907262, 1814526.

Related Research Articles

<span class="mw-page-title-main">Prime number</span> Evenly divided only by 1 or itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

The Collatz conjecture is one of the most famous unsolved problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every positive integer into 1. It concerns sequences of integers in which each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence.

<i>p</i>-adic number Number system for a prime p which extends the rationals, defining closeness differently

In mathematics, the p-adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two p-adic numbers are considered to be close when their difference is divisible by a high power of p: the higher the power, the closer they are. This property enables p-adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles.

In mathematics, a real number is said to be simply normal in an integer base b if its infinite sequence of digits is distributed uniformly in the sense that each of the b digit values has the same natural density 1/b. A number is said to be normal in base b if, for every positive integer n, all possible strings n digits long have density bn.

<span class="mw-page-title-main">Clifford A. Pickover</span> American novelist

Clifford Alan Pickover is an American author, editor, and columnist in the fields of science, mathematics, science fiction, innovation, and creativity. For many years, he was employed at the IBM Thomas J. Watson Research Center in Yorktown, New York where he was Editor-in-Chief of the IBM Journal of Research and Development. He has been granted more than 700 U.S. patents, is an elected Fellow for the Committee for Skeptical Inquiry, and is author of more than 50 books, translated into more than a dozen languages.

<span class="mw-page-title-main">Power of two</span> Two raised to an integer power

A power of two is a number of the form 2n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent.

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.

In mathematics, an aliquot sequence is a sequence of positive integers in which each term is the sum of the proper divisors of the previous term. If the sequence reaches the number 1, it ends, since the sum of the proper divisors of 1 is 0.

In mathematics, the persistence of a number is the number of times one must apply a given operation to an integer before reaching a fixed point at which the operation no longer alters the number.

In number theory, a vampire number is a composite natural number with an even number of digits, that can be factored into two natural numbers each with half as many digits as the original number, where the two factors contain precisely all the digits of the original number, in any order, counting multiplicity. The two factors cannot both have trailing zeroes. The first vampire number is 1260 = 21 × 60.

In mathematics, a self-descriptive number is an integer m that in a given base b is b digits long in which each digit d at position n counts how many instances of digit n are in m.

<span class="mw-page-title-main">Polite number</span>

In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite. The impolite numbers are exactly the powers of two, and the polite numbers are the natural numbers that are not powers of two.

An n-parasitic number is a positive natural number which, when multiplied by n, results in movement of the last digit of its decimal representation to its front. Here n is itself a single-digit positive natural number. In other words, the decimal representation undergoes a right circular shift by one place. For example:

In number theory, a sublime number is a positive integer which has a perfect number of positive factors, and whose positive factors add up to another perfect number.

In number theory, a factorion in a given number base is a natural number that equals the sum of the factorials of its digits. The name factorion was coined by the author Clifford A. Pickover.

In number theory, a juggler sequence is an integer sequence that starts with a positive integer a0, with each subsequent term in the sequence defined by the recurrence relation:

A schizophrenic number is an irrational number that displays certain characteristics of rational numbers.

In mathematics, the Dudley triangle is a triangular array of integers that was defined by Underwood Dudley (1987). It consists of the numbers

<span class="mw-page-title-main">Gould's sequence</span> Integer sequence

Gould's sequence is an integer sequence named after Henry W. Gould that counts how many odd numbers are in each row of Pascal's triangle. It consists only of powers of two, and begins:

<span class="mw-page-title-main">Moser–de Bruijn sequence</span> Number, sum of distinct powers of 4

In number theory, the Moser–de Bruijn sequence is an integer sequence named after Leo Moser and Nicolaas Govert de Bruijn, consisting of the sums of distinct powers of 4, or equivalently the numbers whose binary representations are nonzero only in even positions.

References

  1. 1 2 Pickover, Clifford A. (2001). Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning. Oxford University Press. p. 330. ISBN   9780195348002.
  2. Sloane, N. J. A. (ed.). "SequenceA060031(Katydid sequence: closed under n -> 2n + 2 and 7n + 7)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.