Last updated
Designed byRapport, IBM
Common manufacturer(s)
Max. CPU clock rate 125 MHz
Instruction set PowerPC
Cores 256, 1024, 1025

Kilocore, from Rapport Inc. and IBM, is a high-performance, low-power multi-core microprocessor that has 1,025 cores. It contains a single PowerPC processing core, and 1,024 eight-bit Processing Elements running at 125 MHz each, which can be dynamically reconfigured, connected by a shared interconnect. It allows high performance parallel processing.

IBM American multinational technology and consulting corporation

International Business Machines Corporation (IBM) is an American multinational information technology company headquartered in Armonk, New York, with operations in over 170 countries. The company began in 1911, founded in Endicott, New York, as the Computing-Tabulating-Recording Company (CTR) and was renamed "International Business Machines" in 1924.

Microprocessor computer processor contained on an integrated-circuit chip

A microprocessor is a computer processor that incorporates the functions of a central processing unit on a single integrated circuit (IC), or at most a few integrated circuits. The microprocessor is a multipurpose, clock driven, register based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory and provides results as output. Microprocessors contain both combinational logic and sequential digital logic. Microprocessors operate on numbers and symbols represented in the binary number system.

PowerPC RISC instruction set architecture by AIM alliance

PowerPC is a reduced instruction set computer (RISC) instruction set architecture (ISA) created by the 1991 Apple–IBM–Motorola alliance, known as AIM. PowerPC, as an evolving instruction set, has since 2006 been named Power ISA, while the old name lives on as a trademark for some implementations of Power Architecture-based processors.

Rapport's first product to market is the KC256, with 256 8-bit processing elements. The KC256 started shipping in 2006. [1] The elements are grouped in 16 "stripes" of 16 processing elements each, with each stripe able to be dedicated to a particular task.

The "thousand core" products are the KC1024 and KC1025, due in 2008. Both have 1024 8-bit processing elements, in a 32 x 32-stripe configuration. The KC1025 has the PowerPC CPU, while the KC1024 has processing elements only.

IBM says that the Kilocore1025 will enable "streaming live- and high-definition video on a low-power, mobile device at 5 to 10 times the speed of existing processors." [2]

A mobile device is a computing device small enough to hold and operate in the hand. Typically, any handheld computer device will have an LCD FHD or OLED flatscreen interface, providing a touchscreen interface with digital buttons and keyboard or physical buttons along with a physical keyboard. Many such devices can connect to the Internet and interconnect with other devices such as car entertainment systems or headsets via Wi-Fi, Bluetooth, cellular networks, near field communication (NFC). Integrated cameras, digital media players, the ability to place and receive telephone calls, video games, and Global Positioning System (GPS) capabilities are common. Power is typically provided by a lithium battery. Mobile devices may run mobile operating systems that allow third-party apps specialized for said capabilities to be installed and run.

Related Research Articles

Advanced Micro Devices American multinational semiconductor company

Advanced Micro Devices, Inc. (AMD) is an American multinational semiconductor company based in Santa Clara, California that develops computer processors and related technologies for business and consumer markets. While initially it manufactured its own processors, the company later outsourced its manufacturing, a practice known as fabless, after GlobalFoundries was spun off in 2009. AMD's main products include microprocessors, motherboard chipsets, embedded processors and graphics processors for servers, workstations, personal computers and embedded system applications.

In computer architecture, 64-bit computing is the use of processors that have datapath widths, integer size, and memory address widths of 64 bits. Also, 64-bit computer architectures for central processing units (CPUs) and arithmetic logic units (ALUs) are those that are based on processor registers, address buses, or data buses of that size. From the software perspective, 64-bit computing means the use of code with 64-bit virtual memory addresses. However, not all 64-bit instruction sets support full 64-bit virtual memory addresses; x86-64 and ARMv8, for example, support only 48 bits of virtual address, with the remaining 16 bits of the virtual address required to be all 0's or all 1's, and several 64-bit instruction sets support fewer than 64 bits of physical memory address.

The PowerPC 7xx is a family of third generation 32-bit PowerPC microprocessors designed and manufactured by IBM and Motorola. This family is called the PowerPC G3 by its well-known customer Apple Inc., which introduced it on November 10, 1997. The term "PowerPC G3" is often, and incorrectly, imagined to be a microprocessor when in fact a number of microprocessors from different vendors have been used. Such designations were applied to Macintosh computers such as the PowerBook G3, the multicolored iMacs, iBooks and several desktops, including both the Beige and Blue and White Power Macintosh G3s. The low power requirements and small size made the processors ideal for laptops and the name lived out its last days at Apple in the iBook.

The IBM RS64 is a family of microprocessors that were used in the late 1990s in IBM's RS/6000 and AS/400 servers.

PowerPC G4 is a designation used by Apple Computer and Eyetech to describe a fourth generation of 32-bit PowerPC microprocessors. Apple has applied this name to various processor models from Freescale, a former part of Motorola. Motorola and Freescale's proper name of this family of processors is PowerPC 74xx.

Cell is a multi-core microprocessor microarchitecture that combines a general-purpose PowerPC core of modest performance with streamlined coprocessing elements which greatly accelerate multimedia and vector processing applications, as well as many other forms of dedicated computation.


POWER7 is a family of superscalar symmetric multiprocessors based on the Power ISA 2.06 instruction set architecture released in 2010 that succeeded the POWER6. POWER7 was developed by IBM at several sites including IBM's Rochester, MN; Austin, TX; Essex Junction, VT; T. J. Watson Research Center, NY; Bromont, QC and IBM Deutschland Research & Development GmbH, Böblingen, Germany laboratories. IBM announced servers based on POWER7 on 8 February 2010.

The PowerPC 400 family is a line of 32-bit embedded RISC processor cores based on the PowerPC or Power ISA instruction set architectures. The cores are designed to fit inside specialized applications ranging from system-on-a-chip (SoC) microcontrollers, network appliances, application-specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs) to set-top boxes, storage devices and supercomputers.

Apple's Intel Transition was the process of changing the Central Processing Unit (CPU) of Macintosh computers from PowerPC processors to Intel x86 processors. The transition became public knowledge at the 2005 Worldwide Developers Conference (WWDC), when Apple's CEO Steve Jobs made the announcement that the company would make a transition from the use of PowerPC microprocessors supplied by Freescale and IBM in its Macintosh computers, to processors designed and manufactured by Intel, a chief supplier for most of Apple's competitors.

Multi-core processor Microprocessor with more than one processing unit

A multi-core processor is a computer processor integrated circuit with two or more separate processing units, called cores, which each read and execute program instructions, as if the computer had several processors. The instructions are ordinary CPU instructions but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques. Manufacturers typically integrate the cores onto a single integrated circuit die or onto multiple dies in a single chip package. The microprocessors currently used in almost all personal computers are multi-core. A multi-core processor implements multiprocessing in a single physical package. Designers may couple cores in a multi-core device tightly or loosely. For example, cores may or may not share caches, and they may implement message passing or shared-memory inter-core communication methods. Common network topologies to interconnect cores include bus, ring, two-dimensional mesh, and crossbar. Homogeneous multi-core systems include only identical cores; heterogeneous multi-core systems have cores that are not identical. Just as with single-processor systems, cores in multi-core systems may implement architectures such as VLIW, superscalar, vector, or multithreading.

Xenon (processor) CPU

Microsoft XCPU, codenamed Xenon, is a CPU used in the Xbox 360 game console, to be used with ATI's Xenos graphics chip.

The PowerPC 600 family was the first family of PowerPC processors built. They were designed at the Somerset facility in Austin, Texas, jointly funded and staffed by engineers from IBM and Motorola as a part of the AIM alliance. Somerset was opened in 1992 and its goal was to make the first PowerPC processor and then keep designing general purpose PowerPC processors for personal computers. The first incarnation became the PowerPC 601 in 1993, and the second generation soon followed with the PowerPC 603, PowerPC 604 and the 64-bit PowerPC 620.

The PowerPC e600 is a family of 32-bit PowerPC microprocessor cores developed by Freescale for primary use in high performance system-on-a-chip (SoC) designs with speed ranging over 2 GHz, thus making them ideal for high performance routing and telecommunications applications. The e600 is the continuation of the PowerPC 74xx design.

AMD Turion is the brand name AMD applies to its x86-64 low-power consumption (mobile) processors codenamed K8L. The Turion 64 and Turion 64 X2/Ultra processors compete with Intel's mobile processors, initially the Pentium M and the Intel Core and Intel Core 2 processors.

CoreConnect is a microprocessor bus-architecture from IBM for system-on-a-chip (SoC) designs. It was designed to ease the integration and reuse of processor, system, and peripheral cores within standard and custom SoC designs. As a standard SoC design point, it serves as the foundation of IBM or non-IBM devices. Elements of this architecture include the processor local bus (PLB), the on-chip peripheral bus (OPB), a bus bridge, and a device control register (DCR) bus. High-performance peripherals connect to the high-bandwidth, low-latency PLB. Slower peripheral cores connect to the OPB, which reduces traffic on the PLB. CoreConnect has bridging capabilities to the competing AMBA bus architecture, allowing reuse of existing SoC-components.

This article presents a timeline of binary prefixes used to name memory units, in comparison of decimal and binary prefixes for measurement of information and computer storage.

Adapteva is a fabless semiconductor company focusing on low power many core microprocessor design. The company was the second company to announce a design with 1,000 specialized processing cores on a single integrated circuit.

Power ISA Computer instruction set architecture

The Power ISA is an instruction set architecture (ISA) developed by the OpenPOWER Foundation, led by IBM. It was originally developed by the now defunct industry group. Power ISA is an evolution of the PowerPC ISA, created by the mergers of the core PowerPC ISA and the optional Book E for embedded applications. The merger of these two components in 2006 was led by founders IBM and Freescale Semiconductor. The ISA is divided into several categories and every component is defined as a part of a category; each category resides within a certain Book. Processors implement a set of these categories. Different classes of processors are required to implement certain categories, for example a server class processor includes the categories Base, Server, Floating-Point, 64-Bit, etc. All processors implement the Base category.


  1. "Rapport inc". Archived from the original on 20 December 2007.
  2. Tom's hardware: "IBM says Kilocore technology will outrun today's mobile processors" 2006