A kinetic diameter data structure is a kinetic data structure which maintains the diameter of a set of moving points. The diameter of a set of moving points is the maximum distance between any pair of points in the set. In the two dimensional case, the kinetic data structure for kinetic convex hull can be used to construct a kinetic data structure for the diameter of a moving point set that is responsive, compact and efficient.
A kinetic data structure is a data structure used to track an attribute of a geometric system that is moving continuously. For example, a kinetic convex hull data structure maintains the convex hull of a group of moving points. The development of kinetic data structures was motivated by computational geometry problems involving physical objects in continuous motion, such as collision or visibility detection in robotics, animation or computer graphics.
A kinetic convex hull data structure is a kinetic data structure that maintains the convex hull of a set of continuously moving points.
The pair of points with maximum pairwise distance must be one of the pairs of antipodal points of the convex hull of all of the points. Note that two points are antipodal points if they have parallel supporting lines. In the static case, the diameter of a point set can be found by computing the convex hull of the point set, finding all pairs of antipodal points, and then finding the maximum distance between these pairs. This algorithm can be kinetized as follows:
In mathematics, the convex hull or convex envelope or convex closure of a set X of points in the Euclidean plane or in a Euclidean space is the smallest convex set that contains X. For instance, when X is a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around X.
In geometry, a supporting lineL of a curve C in the plane is a line that contains a point of C, but does not separate any two points of C. In other words, C lies completely in one of the two closed half-planes defined by L and has at least one point on L.
Consider the dual of the point set. The points dualize to lines and the convex hull of the points dualizes to the upper and lower envelope of the set of lines. The vertices of the upper convex hull dualize to segments on the upper envelope. The vertices of the lower convex hull dualize to segments on the lower envelope. The range of slopes of the supporting lines of a point on the hull dualize to the x-interval of segment that point dualizes to. When viewed in this dualized fashion the antipodal pairs, are pairs of segments, one from the upper envelope, one from the lower, with overlapping x ranges. Now, the upper and lower envelopes can be viewed as two different x-ordered lists of non overlapping intervals. If these two lists are merged, the antipodal pairs are the overlaps in the merged list.
In geometry, a striking feature of projective planes is the symmetry of the roles played by points and lines in the definitions and theorems, and (plane) duality is the formalization of this concept. There are two approaches to the subject of duality, one through language and the other a more functional approach through special mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a duality. Such a map can be constructed in many ways. The concept of plane duality readily extends to space duality and beyond that to duality in any finite-dimensional projective geometry.
The overlaps in the merged list of x-intervals can be maintained by storing the endpoints of the intervals in a kinetic sorted list. When points swap, the list of antipodal pairs are updated. The upper and lower envelopes can be maintained using the standard data structure for kinetic convex hull. The maximum distance between pairs of antipodal can be maintained with a kinetic tournament. Thus, using kinetic convex hull to maintain the upper and lower envelopes, a kinetic sorted list on these intervals to maintain the antipodal pairs, and a kinetic tournament to maintain the pair of maximum distance apart, the diameter of a moving point set can be maintained.
A kinetic sorted list is a kinetic data structure for maintaining a list of points under motion in sorted order. It is used as a kinetic predecessor data structure, and as a component in more complex kinetic data structures such as kinetic closest pair.
A Kinetic Tournament is a kinetic data structure that functions as a priority queue for elements whose priorities change as a continuous function of time. It is implemented analogously to a "tournament" between elements to determine the "winner", with the certificates enforcing the winner of each "match" in the tournament. It supports the usual priority queue operations - insert, delete and find-max. They are often used as components of other kinetic data structures, such as kinetic closest pair.
This data structure is responsive, compact and efficient. The data structure uses space because the kinetic convex hull, sorted list, and tournament data structures all use space. In all of the data structures, events, inserts, and deletes can be handled in time, so the data structure are responsive, requiring per event. The data structure is efficient because the total number of events is for all and the diameter of a point set can change times, even if the points are moving linearly. This data structure is not local because one point may be in many antipodal pairs, and thus appear many times in the kinetic tournament.
The existence of a local kinetic data structure for diameter is open.
Efficiently maintaining the kinetic diameter of a point set in dimensions higher than 2 is an open problem. Efficient kinetic convex hull in dimensions higher than 2 is also an open problem. [1]
In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid for the diameter of a sphere.
In mathematics, a (real) interval is a set of real numbers with the property that any number that lies between two numbers in the set is also included in the set. For example, the set of all numbers x satisfying 0 ≤ x ≤ 1 is an interval which contains 0 and 1, as well as all numbers between them. Other examples of intervals are the set of all real numbers , the set of all negative real numbers, and the empty set.
Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with history stretching back to antiquity.
Graham's scan is a method of finding the convex hull of a finite set of points in the plane with time complexity O(n log n). It is named after Ronald Graham, who published the original algorithm in 1972. The algorithm finds all vertices of the convex hull ordered along its boundary. It uses a stack to detect and remove concavities in the boundary efficiently.
In computer science, an interval tree is a tree data structure to hold intervals. Specifically, it allows one to efficiently find all intervals that overlap with any given interval or point. It is often used for windowing queries, for instance, to find all roads on a computerized map inside a rectangular viewport, or to find all visible elements inside a three-dimensional scene. A similar data structure is the segment tree.
The dynamic convex hull problem is a class of dynamic problems in computational geometry. The problem consists in the maintenance, i.e., keeping track, of the convex hull for the dynamically changing input data, i.e., when input data elements may be inserted, deleted, or modified. Problems of this class may be distinguished by the types of the input data and the allowed types of modification of the input data.
Algorithms that construct convex hulls of various objects have a broad range of applications in mathematics and computer science.
In computational geometry, the method of rotating calipers is an algorithm design technique that can be used to solve optimization problems including finding the width or diameter of a set of points.
The Shapley–Folkman lemma is a result in convex geometry with applications in mathematical economics that describes the Minkowski addition of sets in a vector space. Minkowski addition is defined as the addition of the sets' members: for example, adding the set consisting of the integers zero and one to itself yields the set consisting of zero, one, and two:
A kinetic closest pair data structure is a kinetic data structure that maintains the closest pair of points, given a set P of n points that are moving continuously with time in a metric space. While many efficient algorithms were known in the static case, they proved hard to kinetize, so new static algorithms were developed to solve this problem.
A Kinetic Triangulation data structure is a kinetic data structure that maintains a triangulation of a set of moving points. Maintaining a kinetic triangulation is important for applications that involve motion planning, such as video games, virtual reality, dynamic simulations and robotics.
A Kinetic Priority Queue is an abstract kinetic data structure. It is a variant of a priority queue designed to maintain the maximum priority element when the priority of every element is changing as a continuous function of time. Kinetic priority queues have been used as components of several kinetic data structures, as well as to solve some important non-kinetic problems such as the k-set problem and the connected red blue segments intersection problem.
A kinetic width data structure is a kinetic data structure which maintains the width of a set of moving points. In 2D, the width of a point set is the minimum distance between two parallel lines that contain the point set in the strip between them. For the two dimensional case, the kinetic data structure for kinetic convex hull can be used to construct a kinetic data structure for the width of a point set that is responsive, compact and efficient.
A kinetic smallest enclosing disk data structure is a kinetic data structure that maintains the smallest enclosing disk of a set of moving points.
Kinetic minimum box is a kinetic data structure to maintain the minimum bounding box of a set of points whose positions change continuously with time. For points moving in a plane, the kinetic convex hull data structure can be used as a basis for a responsive, compact and efficient kinetic minimum box data structure.
In computational geometry, the convex layers of a set of points in the Euclidean plane are a sequence of nested convex polygons having the points as their vertices. The outermost one is the convex hull of the points and the rest are formed in the same way recursively. The innermost layer may be degenerate, consisting only of one or two points. The problem of constructing convex layers has also been called onion peeling or onion decomposition.
P. K. Agarwal, L. J. Guibas, J. Hershberger, and E. Verach. Maintaining the extent of a moving set of points.