This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Kirsty Gogan Alexander (born 11 July 1975) is an entrepreneur and environmentalist advocating for the use of all clean energy sources to solve climate change. In 2021, Kirsty was appointed as a member of the IAEA Standing Advisory Group Nuclear Applications (SAGNA). She was awarded the Global Women In Nuclear Special Award For Work On Climate Change (2016), [1] and Nuclear Industry Council Trailblazer Award (2019). [2]
She is co-founder and managing director of NGO TerraPraxis, [3] [4] consultancy firm LucidCatalyst since 2017, and non-profit organisation Energy for Humanity (EfH) since 2014. [5]
Kirsty is a member of the UK Government’s Nuclear Innovation Research and Advisory Board (NIRAB). [6] [7]
Kirsty is also managing partner of LucidCatalyst, a highly specialized international consultancy focused on large-scale, affordable, market-based decarbonization of the global economy. In 2020, TerraPraxis and LucidCatalyst launched their flagship report Missing Link to a Livable Climate: How Hydrogen Enabled Synthetic Fuels can Help Deliver the Paris Goals. [8]
LucidCatalyst has recently contributed to Decarbonising Hydrogen in a Net Zero Economy, an independent study supported by the IAEA and EDF. It was commissioned by ARPA-E to conduct a study on Cost and Performance Requirements for Flexible Advanced Nuclear Plants in Future U.S. Power Markets [9] [10]
Kirsty co-founded Energy for Humanity (EfH), an organisation dedicated to advocating for clean energy solutions. Kirsty has peer reviewed multiple publications, including the International Energy Agency’s (IEA) Nuclear Power in a Clean Energy System (2019) [11] and Energy Technology Perspectives (2020); [12] CleanTech Group’s investor report on advanced reactors in the clean energy transition (2020); and the Royal Society report on Nuclear Cogeneration: civil nuclear energy in a low carbon future (2020). [13] She also contributed to Advancing Nuclear Innovation: Responding to Climate Change and Strengthening Global Security. [14]
Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium in nuclear power plants. Nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators in some space probes such as Voyager 2. Reactors producing controlled fusion power have been operated since 1958, but have yet to generate net power and are not expected to be commercially available in the near future.
Renewable energy is energy from renewable natural resources that are replenished on a human timescale. The most widely used renewable energy types are solar energy, wind power, and hydropower. Bioenergy and geothermal power are also significant in some countries. Some also consider nuclear power a renewable power source, although this is controversial. Renewable energy installations can be large or small and are suited for both urban and rural areas. Renewable energy is often deployed together with further electrification. This has several benefits: electricity can move heat and vehicles efficiently and is clean at the point of consumption. Variable renewable energy sources are those that have a fluctuating nature, such as wind power and solar power. In contrast, controllable renewable energy sources include dammed hydroelectricity, bioenergy, or geothermal power.
Energy development is the field of activities focused on obtaining sources of energy from natural resources. These activities include the production of renewable, nuclear, and fossil fuel derived sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.
Energy is sustainable if it "meets the needs of the present without compromising the ability of future generations to meet their own needs." Definitions of sustainable energy usually look at its effects on the environment, the economy, and society. These impacts range from greenhouse gas emissions and air pollution to energy poverty and toxic waste. Renewable energy sources such as wind, hydro, solar, and geothermal energy can cause environmental damage but are generally far more sustainable than fossil fuel sources.
Nuclear energy policy is a national and international policy concerning some or all aspects of nuclear energy and the nuclear fuel cycle, such as uranium mining, ore concentration, conversion, enrichment for nuclear fuel, generating electricity by nuclear power, storing and reprocessing spent nuclear fuel, and disposal of radioactive waste. Nuclear energy policies often include the regulation of energy use and standards relating to the nuclear fuel cycle. Other measures include efficiency standards, safety regulations, emission standards, fiscal policies, and legislation on energy trading, transport of nuclear waste and contaminated materials, and their storage. Governments might subsidize nuclear energy and arrange international treaties and trade agreements about the import and export of nuclear technology, electricity, nuclear waste, and uranium.
DEMO, or a demonstration power plant, refers to a proposed class of nuclear fusion experimental reactors that are intended to demonstrate the net production of electric power from nuclear fusion. Most of the ITER partners have plans for their own DEMO-class reactors. With the possible exception of the EU and Japan, there are no plans for international collaboration as there was with ITER.
Nuclear power in the United Kingdom generated 16.1% of the country's electricity in 2020. As of August 2022, the UK has 9 operational nuclear reactors at five locations, producing 5.9 GWe. It also has nuclear reprocessing plants at Sellafield and the Tails Management Facility (TMF) operated by Urenco in Capenhurst.
The Energy Technologies Institute (ETI) was a public-private partnership between global energy and engineering companies and the UK Government that was established in the United Kingdom in 2007. The government set up the ETI following an announcement in the 2006 budget speech. The purpose of the ETI is to “accelerate the development, demonstration and eventual commercial deployment of a focused portfolio of energy technologies, which will increase energy efficiency, reduce greenhouse gas emissions and help achieve energy and climate change goals”. The institute works with a range of academic and commercial bodies.
A low-carbon economy (LCE) is an economy which absorbs as much greenhouse gas as it emits. Greenhouse gas (GHG) emissions due to human activity are the dominant cause of observed climate change since the mid-20th century. There are many proven approaches for moving to a low-carbon economy, such as encouraging renewable energy transition, energy conservation, and electrification of transportation. An example are zero-carbon cities.
Energy planning has a number of different meanings, but the most common meaning of the term is the process of developing long-range policies to help guide the future of a local, national, regional or even the global energy system. Energy planning is often conducted within governmental organizations but may also be carried out by large energy companies such as electric utilities or oil and gas producers. These oil and gas producers release greenhouse gas emissions. Energy planning may be carried out with input from different stakeholders drawn from government agencies, local utilities, academia and other interest groups.
100% renewable energy is the goal of the use renewable resources for all energy. 100% renewable energy for electricity, heating, cooling and transport is motivated by climate change, pollution and other environmental issues, as well as economic and energy security concerns. Shifting the total global primary energy supply to renewable sources requires a transition of the energy system, since most of today's energy is derived from non-renewable fossil fuels.
ARPA-E, or Advanced Research Projects Agency–Energy is a United States government agency tasked with promoting and funding research and development of advanced energy technologies. It is modeled after the Defense Advanced Research Projects Agency (DARPA).
Between 2007 and 2009, 13 companies applied to the Nuclear Regulatory Commission (NRC) for construction and operating licenses to build 31 new nuclear power reactors in the United States. However, the case for widespread nuclear plant construction has been hampered due to inexpensive natural gas, slow electricity demand growth in a weak US economy, lack of financing, and safety concerns following the Fukushima nuclear accident at a plant built in the early 1970s which occurred in 2011.
Since about 2001 the term nuclear renaissance has been used to refer to a possible nuclear power industry revival, driven by rising fossil fuel prices and new concerns about meeting greenhouse gas emission limits.
The small modular reactor (SMR) is a class of small nuclear fission reactor, designed to be built in a factory, shipped to operational sites for installation and then used to power buildings or other commercial operations. The term SMR refers to the size, capacity and modular construction. Reactor type and the nuclear processes may vary. Of the many SMR designs, the pressurized water reactor (PWR) is the most common. However, recently proposed SMR designs include: generation IV, thermal-neutron reactors, fast-neutron reactors, molten salt, and gas-cooled reactor models.
The international reaction to the 2011 Fukushima Daiichi nuclear disaster has been diverse and widespread. Many inter-governmental agencies responded to the Japanese Fukushima Daiichi nuclear disaster, often on an ad hoc basis. Responders included International Atomic Energy Agency, World Meteorological Organization and the Preparatory Commission for the Comprehensive Nuclear Test Ban Treaty Organization, which has radiation detection equipment deployed around the world.
The Energiewende is the ongoing energy transition by Germany. The new system intends to rely heavily on renewable energy, energy efficiency, and energy demand management.
An energy transition is a major structural change to energy supply and consumption in an energy system. Currently, a transition to sustainable energy is underway to limit climate change. Most of the sustainable energy is renewable energy. Therefore, another term for energy transition is renewable energy transition. The current transition aims to reduce greenhouse gas emissions from energy quickly and sustainably, mostly by phasing-down fossil fuels and changing as many processes as possible to operate on low carbon electricity. A previous energy transition perhaps took place during the Industrial Revolution from 1760 onwards, from wood and other biomass to coal, followed by oil and later natural gas.
How to Avoid a Climate Disaster: The Solutions We Have and the Breakthroughs We Need is a 2021 book by Bill Gates. In it, Gates presents what he learned in over a decade of studying climate change and investing in innovations to address global warming and recommends technological strategies to tackle it.
Alkaline sulfur liquid battery (SLIQ) is a liquid battery which consists of only one rechargeable liquid and a technology which can be used for grid storage.