Kleinman symmetry

Last updated

Kleinman symmetry, named after American physicist D.A. Kleinman, gives a method of reducing the number of distinct coefficients in the rank-3 second order nonlinear optical susceptibility when the applied frequencies are much smaller than any resonant frequencies. [1] [2]

Contents

Formulation

Assuming an instantaneous response we can consider the second order polarisation to be given by for the applied field onto a nonlinear medium.

For a lossless medium with spatial indices we already have full permutation symmetry, where the spatial indices and frequencies are permuted simultaneously according to

In the regime where all frequencies for resonance then this response must be independent of the applied frequencies, i.e. the susceptibility should be dispersionless, and so we can permute the spatial indices without also permuting the frequency arguments.

This is the Kleinman symmetry condition.

In second harmonic generation

Kleinman symmetry in general is too strong a condition to impose, however it is useful for certain cases like in second harmonic generation (SHG). Here, it is always possible to permute the last two indices, meaning it is convenient to use the contracted notation

Table showing the relabelling for contracted notation in SHG Kleinman-symmetry-table.png
Table showing the relabelling for contracted notation in SHG

which is a 3x6 rank-2 tensor where the index is related to combinations of indices as shown in the figure. This notation is used in section VII of Kleinman's original work on the subject in 1962. [4]

Note that for processes other than SHG there may be further, or fewer reduction of the number of terms required to fully describe the second order polarisation response.

See also

Related Research Articles

<span class="mw-page-title-main">Nonlinear optics</span> Branch of physics

Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds.

<span class="mw-page-title-main">Superparamagnetism</span>

Superparamagnetism is a form of magnetism which appears in small ferromagnetic or ferrimagnetic nanoparticles. In sufficiently small nanoparticles, magnetization can randomly flip direction under the influence of temperature. The typical time between two flips is called the Néel relaxation time. In the absence of an external magnetic field, when the time used to measure the magnetization of the nanoparticles is much longer than the Néel relaxation time, their magnetization appears to be in average zero; they are said to be in the superparamagnetic state. In this state, an external magnetic field is able to magnetize the nanoparticles, similarly to a paramagnet. However, their magnetic susceptibility is much larger than that of paramagnets.

<span class="mw-page-title-main">Dielectric</span> Electrically insulating substance able to be polarised by an applied electric field

In electromagnetism, a dielectric is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they shift, only slightly, from their average equilibrium positions, causing dielectric polarisation. Because of dielectric polarisation, positive charges are displaced in the direction of the field and negative charges shift in the direction opposite to the field. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarised, but also reorient so that their symmetry axes align to the field.

<span class="mw-page-title-main">Permittivity</span> Measure of the electric polarizability of a dielectric

In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε (epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material. In electrostatics, the permittivity plays an important role in determining the capacitance of a capacitor.

Crystal optics is the branch of optics that describes the behaviour of light in anisotropic media, that is, media in which light behaves differently depending on which direction the light is propagating. The index of refraction depends on both composition and crystal structure and can be calculated using the Gladstone–Dale relation. Crystals are often naturally anisotropic, and in some media it is possible to induce anisotropy by applying an external electric field.

The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index change is directly proportional to the square of the electric field instead of varying linearly with it. All materials show a Kerr effect, but certain liquids display it more strongly than others. The Kerr effect was discovered in 1875 by Scottish physicist John Kerr.

<span class="mw-page-title-main">Polarization density</span> Vector field describing the density of electric dipole moments in a dielectric material

In classical electromagnetism, polarization density is the vector field that expresses the density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized. The electric dipole moment induced per unit volume of the dielectric material is called the electric polarization of the dielectric.

In electricity (electromagnetism), the electric susceptibility is a dimensionless proportionality constant that indicates the degree of polarization of a dielectric material in response to an applied electric field. The greater the electric susceptibility, the greater the ability of a material to polarize in response to the field, and thereby reduce the total electric field inside the material(and store energy). It is in this way that the electric susceptibility influences the electric permittivity of the material and thus influences many other phenomena in that medium, from the capacitance of capacitors to the speed of light.

The Kramers–Kronig relations are bidirectional mathematical relations, connecting the real and imaginary parts of any complex function that is analytic in the upper half-plane. The relations are often used to compute the real part from the imaginary part of response functions in physical systems, because for stable systems, causality implies the condition of analycity, and conversely, analyticity implies causality of the corresponding stable physical system. The relation is named in honor of Ralph Kronig and Hans Kramers. In mathematics, these relations are known by the names Sokhotski–Plemelj theorem and Hilbert transform.

Sum-frequency generation (SFG) is a second order nonlinear optical process based on the mixing of two input photons at frequencies and to generate a third photon at frequency . As with any optical phenomenon in nonlinear optics, this can only occur under conditions where: the light is interacting with matter, that lacks centrosymmetry ; the light has a very high intensity . Sum-frequency generation is a "parametric process", meaning that the photons satisfy energy conservation, leaving the matter unchanged:

<span class="mw-page-title-main">Second-harmonic generation</span> Nonlinear optical process

Second-harmonic generation is a nonlinear optical process in which two photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with twice the energy of the initial photons, that conserves the coherence of the excitation. It is a special case of sum-frequency generation, and more generally of harmonic generation.

A linear response function describes the input-output relationship of a signal transducer, such as a radio turning electromagnetic waves into music or a neuron turning synaptic input into a response. Because of its many applications in information theory, physics and engineering there exist alternative names for specific linear response functions such as susceptibility, impulse response or impedance; see also transfer function. The concept of a Green's function or fundamental solution of an ordinary differential equation is closely related.

Multiphoton intrapulse interference phase scan (MIIPS) is a method used in ultrashort laser technology that simultaneously measures, and compensates femtosecond laser pulses using an adaptive pulse shaper. When an ultrashort laser pulse reaches a duration of less than a few hundred femtosecond, it becomes critical to characterize its duration, its temporal intensity curve, or its electric field as a function of time. Classical photodetectors measuring the intensity of light are still too slow to allow for a direct measurement, even with the fastest photodiodes or streak cameras.

<span class="mw-page-title-main">Harmonic generation</span> Nonlinear optical process

Harmonic generation is a nonlinear optical process in which photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with times the energy of the initial photons.

<span class="mw-page-title-main">Second-harmonic imaging microscopy</span>

Second-harmonic imaging microscopy (SHIM) is based on a nonlinear optical effect known as second-harmonic generation (SHG). SHIM has been established as a viable microscope imaging contrast mechanism for visualization of cell and tissue structure and function. A second-harmonic microscope obtains contrasts from variations in a specimen's ability to generate second-harmonic light from the incident light while a conventional optical microscope obtains its contrast by detecting variations in optical density, path length, or refractive index of the specimen. SHG requires intense laser light passing through a material with a noncentrosymmetric molecular structure, either inherent or induced externally, for example by an electric field.

Surface second harmonic generation is a method for probing interfaces in atomic and molecular systems. In second harmonic generation (SHG), the light frequency is doubled, essentially converting two photons of the original beam of energy E into a single photon of energy 2E as it interacts with noncentrosymmetric media. Surface second harmonic generation is a special case of SHG where the second beam is generated because of a break of symmetry caused by an interface. Since centrosymmetric symmetry in centrosymmetric media is only disrupted in the first atomic or molecular layer of a system, properties of the second harmonic signal then provide information about the surface atomic or molecular layers only. Surface SHG is possible even for materials which do not exhibit SHG in the bulk. Although in many situations the dominant second harmonic signal arises from the broken symmetry at the surface, the signal in fact always has contributions from both the surface and bulk. Thus, the most sensitive experiments typically involve modification of a surface and study of the subsequent modification of the harmonic generation properties.

Sum frequency generation spectroscopy (SFG) is a nonlinear laser spectroscopy technique used to analyze surfaces and interfaces. It can be expressed as a sum of a series of Lorentz oscillators. In a typical SFG setup, two laser beams mix at an interface and generate an output beam with a frequency equal to the sum of the two input frequencies, traveling in a direction allegedly given by the sum of the incident beams' wavevectors. The technique was developed in 1987 by Yuen-Ron Shen and his students as an extension of second harmonic generation spectroscopy and rapidly applied to deduce the composition, orientation distributions, and structural information of molecules at gas–solid, gas–liquid and liquid–solid interfaces. Soon after its invention, Philippe Guyot-Sionnest extended the technique to obtain the first measurements of electronic and vibrational dynamics at surfaces. SFG has advantages in its ability to be monolayer surface sensitive, ability to be performed in situ, and its capability to provide ultrafast time resolution. SFG gives information complementary to infrared and Raman spectroscopy.

A parametric process is an optical process in which light interacts with matter in such a way as to leave the quantum state of the material unchanged. As a direct consequence of this there can be no net transfer of energy, momentum, or angular momentum between the optical field and the physical system. In contrast a non-parametric process is a process in which any part of the quantum state of the system changes.

In optics, Miller's rule is an empirical rule which gives an estimate of the order of magnitude of the nonlinear coefficient.

<span class="mw-page-title-main">Lorentz oscillator model</span> Theoretical model describing the optical response of bound charges

The Lorentz oscillator model describes the optical response of bound charges. The model is named after the Dutch physicist Hendrik Antoon Lorentz. It is a classical, phenomenological model for materials with characteristic resonance frequencies for optical absorption, e.g. ionic and molecular vibrations, interband transitions (semiconductors), phonons, and collective excitations.

References

  1. Dailey, Christopher A.; Burke, Brian J.; Simpson, Garth J. (2004-05-21). "The general failure of Kleinman symmetry in practical nonlinear optical applications". Chemical Physics Letters. 390 (1): 8–13. Bibcode:2004CPL...390....8D. doi:10.1016/j.cplett.2004.03.109. ISSN   0009-2614.
  2. Lecture 23: Kleinman's Symmetry, Neumann's Principle , retrieved 2022-02-10
  3. Boyd, Robert W. (2020-01-01), Boyd, Robert W. (ed.), "Chapter 1 - The Nonlinear Optical Susceptibility", Nonlinear Optics (Fourth Edition), Academic Press, pp. 1–64, doi:10.1016/b978-0-12-811002-7.00010-2, ISBN   978-0-12-811002-7 , retrieved 2022-02-11
  4. Kleinman, D. A. (1962-11-15). "Theory of Second Harmonic Generation of Light". Physical Review. 128 (4): 1761–1775. Bibcode:1962PhRv..128.1761K. doi:10.1103/PhysRev.128.1761.