Knudsen gas

Last updated

A Knudsen gas is a gas in a state of such low density that the average distance travelled by the gas molecules between collisions (mean free path) is greater than the diameter of the receptacle that contains it. [1] If the mean free path is much greater than the diameter, the flow regime is dominated by collisions between the gas molecules and the walls of the receptacle, rather than intermolecular collisions with each other. [2] It is named after Martin Knudsen.

Contents

An example of a Knudsen gas. There are more collisions between the gas molecules and the receptacle walls (shown in red) compared to collisions between gas molecules (shown in blue). Knudsen Gas.jpg
An example of a Knudsen gas. There are more collisions between the gas molecules and the receptacle walls (shown in red) compared to collisions between gas molecules (shown in blue).

Knudsen number

For a Knudsen gas, the Knudsen number must be greater than 1. The Knudsen number can be defined as:

where

is the mean free path [m]

is the diameter of the receptacle [m].

When , the flow regime of the gas is transitional flow. In this regime the intermolecular collisions between gas particles are not yet negligible compared to collisions with the wall. However when , the flow regime is free molecular flow, so the intermolecular collisions between the particles are negligible compared to the collisions with the wall. [3]

Example

For example, consider a receptacle of air at room temperature and pressure with a mean free path of 68nm. [4] If the diameter of the receptacle is less than 68nm, the Knudsen number would greater than 1, and this sample of air would be considered a Knudsen gas. It would not be a Knudsen gas if the diameter of the receptacle is greater than 68nm.

Related Research Articles

<span class="mw-page-title-main">Aerosol</span> Suspension of fine solid particles or liquid droplets in air or another gas

An aerosol is a suspension of fine solid particles or liquid droplets in air or another gas. Aerosols can be natural or anthropogenic. Examples of natural aerosols are fog or mist, dust, forest exudates, and geyser steam. Examples of anthropogenic aerosols include particulate air pollutants, mist from the discharge at hydroelectric dams, irrigation mist, perfume from atomizers, smoke, dust, steam from a kettle, sprayed pesticides, and medical treatments for respiratory illnesses. When a person inhales the contents of a vape pen or e-cigarette, they are inhaling an anthropogenic aerosol.

The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or .

<span class="mw-page-title-main">Kinetic theory of gases</span> Historic physical model of gases

The kinetic theory of gases is a simple, historically significant classical model of the thermodynamic behavior of gases, with which many principal concepts of thermodynamics were established. The model describes a gas as a large number of identical submicroscopic particles, all of which are in constant, rapid, random motion. Their size is assumed to be much smaller than the average distance between the particles. The particles undergo random elastic collisions between themselves and with the enclosing walls of the container. The basic version of the model describes the ideal gas, and considers no other interactions between the particles.

In physics, mean free path is the average distance over which a moving particle travels before substantially changing its direction or energy, typically as a result of one or more successive collisions with other particles.

<span class="mw-page-title-main">Effusion</span> Process of a gas escaping through a small hole

In physics and chemistry, effusion is the process in which a gas escapes from a container through a hole of diameter considerably smaller than the mean free path of the molecules. Such a hole is often described as a pinhole and the escape of the gas is due to the pressure difference between the container and the exterior. Under these conditions, essentially all molecules which arrive at the hole continue and pass through the hole, since collisions between molecules in the region of the hole are negligible. Conversely, when the diameter is larger than the mean free path of the gas, flow obeys the Sampson flow law.

The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of a body in a fluid. The number is named after Danish physicist Martin Knudsen (1871–1949).

<span class="mw-page-title-main">Paschen's law</span> Physical law about electrical discharge in gases

Paschen's law is an equation that gives the breakdown voltage, that is, the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of pressure and gap length. It is named after Friedrich Paschen who discovered it empirically in 1889.

In plasmas and electrolytes, the Debye length, is a measure of a charge carrier's net electrostatic effect in a solution and how far its electrostatic effect persists. With each Debye length the charges are increasingly electrically screened and the electric potential decreases in magnitude by 1/e. A Debye sphere is a volume whose radius is the Debye length. Debye length is an important parameter in plasma physics, electrolytes, and colloids. The corresponding Debye screening wave vector for particles of density , charge at a temperature is given by in Gaussian units. Expressions in MKS units will be given below. The analogous quantities at very low temperatures are known as the Thomas–Fermi length and the Thomas–Fermi wave vector. They are of interest in describing the behaviour of electrons in metals at room temperature.

The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle. It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons.

Electrical mobility is the ability of charged particles to move through a medium in response to an electric field that is pulling them. The separation of ions according to their mobility in gas phase is called ion mobility spectrometry, in liquid phase it is called electrophoresis.

Viscosity depends strongly on temperature. In liquids it usually decreases with increasing temperature, whereas, in most gases, viscosity increases with increasing temperature. This article discusses several models of this dependence, ranging from rigorous first-principles calculations for monatomic gases, to empirical correlations for liquids.

Direct simulation Monte Carlo (DSMC) method uses probabilistic Monte Carlo simulation to solve the Boltzmann equation for finite Knudsen number fluid flows.

In mesoscopic physics, ballistic conduction is the unimpeded flow of charge carriers, or energy-carrying particles, over relatively long distances in a material. In general, the resistivity of a material exists because an electron, while moving inside a medium, is scattered by impurities, defects, thermal fluctuations of ions in a crystalline solid, or, generally, by any freely-moving atom/molecule composing a gas or liquid. Without scattering, electrons simply obey Newton's second law of motion at non-relativistic speeds.

The Bagnold number (Ba) is the ratio of grain collision stresses to viscous fluid stresses in a granular flow with interstitial Newtonian fluid, first identified by Ralph Alger Bagnold.

<span class="mw-page-title-main">Knudsen diffusion</span> Particle behavior in systems of length less than the mean free path

In physics, Knudsen diffusion, named after Martin Knudsen, is a means of diffusion that occurs when the scale length of a system is comparable to or smaller than the mean free path of the particles involved. An example of this is in a long pore with a narrow diameter (2–50 nm) because molecules frequently collide with the pore wall. As another example, consider the diffusion of gas molecules through very small capillary pores. If the pore diameter is smaller than the mean free path of the diffusing gas molecules, and the density of the gas is low, the gas molecules collide with the pore walls more frequently than with each other, leading to Knudsen diffusion.

In fluid dynamics, the Cunningham correction factor, or Cunningham slip correction factor, is used to account for non-continuum effects when calculating the drag on small particles. The derivation of Stokes' law, which is used to calculate the drag force on small particles, assumes a no-slip condition which is no longer correct at high Knudsen numbers. The Cunningham slip correction factor allows predicting the drag force on a particle moving a fluid with Knudsen number between the continuum regime and free molecular flow.

Free molecular flow describes the fluid dynamics of gas where the mean free path of the molecules is larger than the size of the chamber or of the object under test. For tubes/objects of the size of several cm, this means pressures well below 10−3 mbar. This is also called the regime of high vacuum, or even ultra-high vacuum. This is opposed to viscous flow encountered at higher pressures. The presence of free molecular flow can be calculated, at least in estimation, with the Knudsen number (Kn). If Kn > 10, the system is in free molecular flow, also known as Knudsen flow.

In Petrophysics a Klinkenberg correction is a procedure for calibration of permeability data obtained from a minipermeameter device. A more accurate correction factor can be obtained using Knudsen correction. When using nitrogen gas for core plug measurements, the Klinkenberg correction is usually necessary due to the so-called Klinkenberg gas slippage effect. This takes place when the pore space approaches the mean free path of the gas

Chapman–Enskog theory provides a framework in which equations of hydrodynamics for a gas can be derived from the Boltzmann equation. The technique justifies the otherwise phenomenological constitutive relations appearing in hydrodynamical descriptions such as the Navier–Stokes equations. In doing so, expressions for various transport coefficients such as thermal conductivity and viscosity are obtained in terms of molecular parameters. Thus, Chapman–Enskog theory constitutes an important step in the passage from a microscopic, particle-based description to a continuum hydrodynamical one.

Sampson flow is defined as fluid flow through an infinitely thin orifice in the viscous flow regime for low Reynolds number. It is derived from an analytical solution to the Navier-Stokes equations. The below equation can be used to calculate the total volumetric flowrate through such an orifice:

References

  1. Pardington, J.R. (1949). An advanced treatise on physical chemistry. Vol. 1, Fundamental principles. The Properties of gases. London: Longmans, Green & Co. p. 927.
  2. Lebon, G. (2008). Understanding non-equilibrium thermodynamics : foundations, applications, frontiers. D. Jou, J. Casas-Vázquez. Berlin: Springer. p. 192. ISBN   978-3-540-74252-4. OCLC   233973416.
  3. S. G. Kandlikar; Srinivas Garimella; Dongqing Li; Stéphane Colin; Michael R. King (2013). Heat transfer and fluid flow in minichannels and microchannels (2nd ed.). Oxford: Butterworth-Heinemann. pp. 19–21. ISBN   978-0-08-098351-6. OCLC   862108729.
  4. Jennings, S. G (1988-04-01). "The mean free path in air". Journal of Aerosol Science. 19 (2): 159–166. Bibcode:1988JAerS..19..159J. doi:10.1016/0021-8502(88)90219-4. ISSN   0021-8502.

See also