Free streaming

Last updated

In astronomy, a free streaming particle, often a photon, is one that propagates through a medium without scattering.

Contents

Use in defining surfaces

Defining an exact surface for an object such as the Sun is made difficult by the diffuse nature of matter which constitutes the Sun at distances far from the stellar core. An often used definition for the surface of a star is based on the path that photons take. Inside a star, photons travel by random walk, constantly interacting with matter, and the surface of the star is defined as the point at which photons encounter little resistance from the matter in the stellar atmosphere, or in other words, when photons stream freely. [1]

The light which constitutes the cosmic microwave background comes from the surface of last scattering. This is, on average, the surface at which primordial photons last interacted with matter in the universe, or in other words, the point at which photons started free streaming. [2] Similarly, the surface of the cosmic neutrino background, if it could be observed, would mark when neutrinos decoupled and began to stream freely through the rest of the matter in the universe.

See also

Related Research Articles

<span class="mw-page-title-main">Cosmic microwave background</span> Trace radiation from the early universe

The cosmic microwave background, or relic radiation, is microwave radiation that fills all space in the observable universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s.

<span class="mw-page-title-main">Dark matter</span> Concept in cosmology

In astronomy, dark matter is a hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be observed. Such effects occur in the context of formation and evolution of galaxies, gravitational lensing, the observable universe's current structure, mass position in galactic collisions, the motion of galaxies within galaxy clusters, and cosmic microwave background anisotropies.

<span class="mw-page-title-main">Neutrino</span> Elementary particle with extremely low mass

A neutrino is an elementary particle that interacts via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.

<span class="mw-page-title-main">Astronomy</span> Scientific study of celestial objects

Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, meteoroids, asteroids, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond Earth's atmosphere. Cosmology is a branch of astronomy that studies the universe as a whole.

<span class="mw-page-title-main">Observable universe</span> All of space observable from the Earth at the present

The observable universe is a spherical region of the universe consisting of all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical region centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.

<span class="mw-page-title-main">Sachs–Wolfe effect</span> Phenomenon of redshift in cosmology

The Sachs–Wolfe effect, named after Rainer K. Sachs and Arthur M. Wolfe, is a property of the cosmic microwave background radiation (CMB), in which photons from the CMB are gravitationally redshifted, causing the CMB spectrum to appear uneven. This effect is the predominant source of fluctuations in the CMB for angular scales larger than about ten degrees.

<span class="mw-page-title-main">Observational astronomy</span> Division of astronomy

Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical models. It is the practice and study of observing celestial objects with the use of telescopes and other astronomical instruments.

<span class="mw-page-title-main">Neutrino astronomy</span> Observing low-mass stellar particles

Neutrino astronomy is the branch of astronomy that gathers information about astronomical objects by observing and studying neutrinos emitted by them with the help of neutrino detectors in special Earth observatories. It is an emerging field in astroparticle physics providing insights into the high-energy and non-thermal processes in the universe.

<span class="mw-page-title-main">Theoretical astronomy</span> Applied and interdisciplinary physics

Theoretical astronomy is the use of analytical and computational models based on principles from physics and chemistry to describe and explain astronomical objects and astronomical phenomena. Theorists in astronomy endeavor to create theoretical models and from the results predict observational consequences of those models. The observation of a phenomenon predicted by a model allows astronomers to select between several alternate or conflicting models as the one best able to describe the phenomena.

<span class="mw-page-title-main">Cosmic neutrino background</span> Universes background particle radiation composed of neutrinos

The cosmic neutrino background is the universe's background particle radiation composed of neutrinos. They are sometimes known as relic neutrinos.

A cosmological horizon is a measure of the distance from which one could possibly retrieve information. This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Cosmological horizons set the size and scale of the observable universe. This article explains a number of these horizons.

<span class="mw-page-title-main">Neutrino detector</span> Physics apparatus which is designed to study neutrinos

A neutrino detector is a physics apparatus which is designed to study neutrinos. Because neutrinos only weakly interact with other particles of matter, neutrino detectors must be very large to detect a significant number of neutrinos. Neutrino detectors are often built underground, to isolate the detector from cosmic rays and other background radiation. The field of neutrino astronomy is still very much in its infancy – the only confirmed extraterrestrial sources as of 2018 are the Sun and the supernova 1987A in the nearby Large Magellanic Cloud. Another likely source is the blazar TXS 0506+056 about 3.7 billion light years away. Neutrino observatories will "give astronomers fresh eyes with which to study the universe".

<span class="mw-page-title-main">Photon epoch</span> Period in the evolution of the early universe

In physical cosmology, the photon epoch was the period in the evolution of the early universe in which photons dominated the energy of the universe. The photon epoch started after most leptons and anti-leptons were annihilated at the end of the lepton epoch, about 10 seconds after the Big Bang. Atomic nuclei were created in the process of nucleosynthesis, which occurred during the first few minutes of the photon epoch. For the remainder of the photon epoch, the universe contained a hot dense plasma of nuclei, electrons and photons.

Astroparticle physics, also called particle astrophysics, is a branch of particle physics that studies elementary particles of astrophysical origin and their relation to astrophysics and cosmology. It is a relatively new field of research emerging at the intersection of particle physics, astronomy, astrophysics, detector physics, relativity, solid state physics, and cosmology. Partly motivated by the discovery of neutrino oscillation, the field has undergone rapid development, both theoretically and experimentally, since the early 2000s.

<span class="mw-page-title-main">Diffusion damping</span> Physical process in cosmology

In modern cosmological theory, diffusion damping, also called photon diffusion damping, is a physical process which reduced density inequalities (anisotropies) in the early universe, making the universe itself and the cosmic microwave background radiation (CMB) more uniform. Around 300,000 years after the Big Bang, during the epoch of recombination, diffusing photons travelled from hot regions of space to cold ones, equalising the temperatures of these regions. This effect is responsible, along with baryon acoustic oscillations, the Doppler effect, and the effects of gravity on electromagnetic radiation, for the eventual formation of galaxies and galaxy clusters, these being the dominant large scale structures which are observed in the universe. It is a damping by diffusion, not of diffusion.

<span class="mw-page-title-main">Chronology of the universe</span> History and future of the universe

The chronology of the universe describes the history and future of the universe according to Big Bang cosmology.

<span class="mw-page-title-main">Cosmic background radiation</span> Electromagnetic radiation from the Big Bang

Cosmic background radiation is electromagnetic radiation that fills all space. The origin of this radiation depends on the region of the spectrum that is observed. One component is the cosmic microwave background. This component is redshifted photons that have freely streamed from an epoch when the Universe became transparent for the first time to radiation. Its discovery and detailed observations of its properties are considered one of the major confirmations of the Big Bang. The discovery of the cosmic background radiation suggests that the early universe was dominated by a radiation field, a field of extremely high temperature and pressure.

<span class="mw-page-title-main">Recombination (cosmology)</span> Epoch c. 370,000 years after the Big Bang

In cosmology, recombination refers to the epoch during which charged electrons and protons first became bound to form electrically neutral hydrogen atoms. Recombination occurred about 378000 years after the Big Bang. The word "recombination" is misleading, since the Big Bang theory does not posit that protons and electrons had been combined before, but the name exists for historical reasons since it was named before the Big Bang hypothesis became the primary theory of the birth of the universe.

<span class="mw-page-title-main">Decoupling (cosmology)</span> Type of event in the early universe

In cosmology, decoupling is a period in the development of the universe when different types of particles fall out of thermal equilibrium with each other. This occurs as a result of the expansion of the universe, as their interaction rates decrease up to this critical point. The two verified instances of decoupling since the Big Bang which are most often discussed are photon decoupling and neutrino decoupling, as these led to the cosmic microwave background and cosmic neutrino background, respectively.

This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.

References

  1. Shu (1982), p. 89.
  2. "The Miller Lab at Columbia University". Archived from the original on 2007-06-13. Retrieved 2009-07-05.

Bibliography