Kolchin's problems

Last updated

Kolchin's problems are a set of unsolved problems in differential algebra, outlined by Ellis Kolchin at the International Congress of Mathematicians in 1966 (Moscow)

Contents

Kolchin Catenary Conjecture

The Kolchin Catenary Conjecture is a fundamental open problem in differential algebra related to dimension theory.

Statement

"Let be a differential algebraic variety of dimension By a long gap chain we mean a chain of irreducible differential subvarieties of ordinal number length ."

Given an irreducible differential variety of dimension and an arbitrary point , does there exist a long gap chain beginning at and ending at ?

The positive answer to this question is called the Kolchin catenary conjecture. [1] [2] [3] [4]

Related Research Articles

<span class="mw-page-title-main">Spinor</span> Non-tensorial representation of the spin group

In geometry and physics, spinors are elements of a complex number-based vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation, but unlike geometric vectors and tensors, a spinor transforms to its negative when the space rotates through 360°. It takes a rotation of 720° for a spinor to go back to its original state. This property characterizes spinors: spinors can be viewed as the "square roots" of vectors.

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.

In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.

In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

<span class="mw-page-title-main">Exterior algebra</span> Algebra of exterior/ wedge products

In mathematics, the exterior algebra or Grassmann algebra of a vector space is an associative algebra that contains which has a product, called exterior product or wedge product and denoted with , such that for every vector in The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol and the fact that the product of two elements of are "outside"

<span class="mw-page-title-main">Hodge conjecture</span> Unsolved problem in geometry

In mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry and complex geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties.

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

<span class="mw-page-title-main">Lie algebra representation</span>

In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.

Let be a partial differential ring with commuting derivatives . The Weyl algebra associated to is the noncommutative ring satisfying the relations for all .

<span class="mw-page-title-main">3-manifold</span> Mathematical space

In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small and close enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.

<span class="mw-page-title-main">Symmetric space</span> A (pseudo-)Riemannian manifold whose geodesics are reversible.

In mathematics, a symmetric space is a Riemannian manifold whose group of isometries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis.

In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.

In mathematics, Schubert calculus is a branch of algebraic geometry introduced in the nineteenth century by Hermann Schubert in order to solve various counting problems of projective geometry and, as such, is viewed as part of enumerative geometry. Giving it a more rigorous foundation was the aim of Hilbert's 15th problem. It is related to several more modern concepts, such as characteristic classes, and both its algorithmic aspects and applications remain of current interest. The term Schubert calculus is sometimes used to mean the enumerative geometry of linear subspaces of a vector space, which is roughly equivalent to describing the cohomology ring of Grassmannians. Sometimes it is used to mean the more general enumerative geometry of algebraic varieties that are homogenous spaces of simple Lie groups. Even more generally, Schubert calculus is sometimes understood as encompassing the study of analogous questions in generalized cohomology theories.

<span class="mw-page-title-main">Ellis Kolchin</span>

Ellis Robert Kolchin was an American mathematician at Columbia University. Kolchin earned a doctorate in mathematics from Columbia University in 1941 under supervision of Joseph Ritt. Shortly after he served in the South Pacific in World War II. He was awarded a Guggenheim Fellowship in 1954 and 1961.

Difference algebra is a branch of mathematics concerned with the study of difference equations from the algebraic point of view. Difference algebra is analogous to differential algebra but concerned with difference equations rather than differential equations. As an independent subject it was initiated by Joseph Ritt and his student Richard Cohn.

In mathematics, in particular abstract algebra and topology, a homotopy Lie algebra is a generalisation of the concept of a differential graded Lie algebra. To be a little more specific, the Jacobi identity only holds up to homotopy. Therefore, a differential graded Lie algebra can be seen as a homotopy Lie algebra where the Jacobi identity holds on the nose. These homotopy algebras are useful in classifying deformation problems over characteristic 0 in deformation theory because deformation functors are classified by quasi-isomorphism classes of -algebras. This was later extended to all characteristics by Jonathan Pridham.

In mathematics, and especially differential and algebraic geometry, K-stability is an algebro-geometric stability condition, for complex manifolds and complex algebraic varieties. The notion of K-stability was first introduced by Gang Tian and reformulated more algebraically later by Simon Donaldson. The definition was inspired by a comparison to geometric invariant theory (GIT) stability. In the special case of Fano varieties, K-stability precisely characterises the existence of Kähler–Einstein metrics. More generally, on any compact complex manifold, K-stability is conjectured to be equivalent to the existence of constant scalar curvature Kähler metrics.

The Jacobi bound problem concerns the veracity of Jacobi's inequality which is an inequality on the absolute dimension of a differential algebraic variety in terms of its defining equations. This is one of Kolchin's Problems.

References

  1. Kolchin, Ellis Robert, Alexandru Buium, and Phyllis Joan Cassidy. Selected works of Ellis Kolchin with commentary. Vol. 12. American Mathematical Soc., 1999. (pg 607)
  2. Freitag, James; Sánchez, Omar León; Simmons, William (June 2, 2016). "On Linear Dependence Over Complete Differential Algebraic Varieties". Communications in Algebra. 44 (6): 2645–2669. arXiv: 1401.6211 . doi:10.1080/00927872.2015.1057828 via CrossRef.
  3. Johnson, Joseph (December 1, 1969). "A notion of krull dimension for differential rings". Commentarii Mathematici Helvetici. 44 (1): 207–216. doi:10.1007/BF02564523 via Springer Link.
  4. Rosenfeld, Azriel (May 26, 1959). "Specializations in differential algebra". Transactions of the American Mathematical Society. 90 (3): 394–407. doi:10.1090/S0002-9947-1959-0107642-2 via www.ams.org.