Kronecker limit formula

Last updated

In mathematics, the classical Kronecker limit formula describes the constant term at s = 1 of a real analytic Eisenstein series (or Epstein zeta function) in terms of the Dedekind eta function. There are many generalizations of it to more complicated Eisenstein series. It is named for Leopold Kronecker.

Contents

First Kronecker limit formula

The (first) Kronecker limit formula states that

where

for Re(s) > 1, and by analytic continuation for other values of the complex number s.

So the Eisenstein series has a pole at s = 1 of residue π, and the (first) Kronecker limit formula gives the constant term of the Laurent series at this pole.

This formula has an interpretation in terms of the spectral geometry of the elliptic curve associated to the lattice : it says that the zeta-regularized determinant of the Laplace operator associated to the flat metric on is given by . This formula has been used in string theory for the one-loop computation in Polyakov's perturbative approach.

Second Kronecker limit formula

The second Kronecker limit formula states that

where

for Re(s) > 1, and is defined by analytic continuation for other values of the complex number s.

See also

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string theory.

<span class="mw-page-title-main">Weierstrass elliptic function</span> Class of mathematical functions

In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

<i>j</i>-invariant

In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for SL(2, Z) defined on the upper half-plane of complex numbers. It is the unique such function which is holomorphic away from a simple pole at the cusp such that

In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.

In mathematics, the Chowla–Selberg formula is the evaluation of a certain product of values of the gamma function at rational values in terms of values of the Dedekind eta function at imaginary quadratic irrational numbers. The result was essentially found by Lerch (1897) and rediscovered by Chowla and Selberg.

In signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal and some transform, time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.

In mathematics, the Mahler measureof a polynomial with complex coefficients is defined as

<span class="mw-page-title-main">Ramanujan tau function</span>

The Ramanujan tau function, studied by Ramanujan (1916), is the function defined by the following identity:

<span class="mw-page-title-main">Euler function</span> Mathematical function

In mathematics, the Euler function is given by

<span class="mw-page-title-main">Bring radical</span> Real root of the polynomial x^5+x+a

In algebra, the Bring radical or ultraradical of a real number a is the unique real root of the polynomial

<span class="mw-page-title-main">Directivity</span> Measure of how much of an antennas signal is transmitted in one direction

In electromagnetics, directivity is a parameter of an antenna or optical system which measures the degree to which the radiation emitted is concentrated in a single direction. It is the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions. Therefore, the directivity of a hypothetical isotropic radiator is 1, or 0 dBi.

In mathematics, the simplest real analytic Eisenstein series is a special function of two variables. It is used in the representation theory of SL(2,R) and in analytic number theory. It is closely related to the Epstein zeta function.

A Modified Wigner distribution function is a variation of the Wigner distribution function (WD) with reduced or removed cross-terms.

Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.

<span class="mw-page-title-main">Rogers–Ramanujan continued fraction</span> Continued fraction closely related to the Rogers–Ramanujan identities

The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.

<span class="mw-page-title-main">Modular lambda function</span>

In mathematics, the modular lambda function λ(τ) is a highly symmetric Holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve , where the map is defined as the quotient by the [−1] involution.

In mathematics, the Weber modular functions are a family of three functions f, f1, and f2, studied by Heinrich Martin Weber.

In mathematics, a Ramanujan–Sato series generalizes Ramanujan’s pi formulas such as,

References