In mathematics, the simplest real analytic Eisenstein series is a special function of two variables. It is used in the representation theory of SL(2,R) and in analytic number theory. It is closely related to the Epstein zeta function.
There are many generalizations associated to more complicated groups.
The Eisenstein series E(z, s) for z = x + iy in the upper half-plane is defined by
for Re(s) > 1, and by analytic continuation for other values of the complex number s. The sum is over all pairs of coprime integers.
Warning: there are several other slightly different definitions. Some authors omit the factor of 1/2, and some sum over all pairs of integers that are not both zero; which changes the function by a factor of ζ(2s).
Viewed as a function of z, E(z,s) is a real-analytic eigenfunction of the Laplace operator on H with the eigenvalue s(s-1). In other words, it satisfies the elliptic partial differential equation
where
The function E(z, s) is invariant under the action of SL(2,Z) on z in the upper half plane by fractional linear transformations. Together with the previous property, this means that the Eisenstein series is a Maass form, a real-analytic analogue of a classical elliptic modular function.
Warning: E(z, s) is not a square-integrable function of z with respect to the invariant Riemannian metric on H.
The Eisenstein series converges for Re(s)>1, but can be analytically continued to a meromorphic function of s on the entire complex plane, with in the half-plane Re(s) 1/2 a unique pole of residue 3/π at s = 1 (for all z in H) and infinitely many poles in the strip 0 < Re(s) < 1/2 at where corresponds to a non-trivial zero of the Riemann zeta-function. The constant term of the pole at s = 1 is described by the Kronecker limit formula.
The modified function
satisfies the functional equation
analogous to the functional equation for the Riemann zeta function ζ(s).
Scalar product of two different Eisenstein series E(z, s) and E(z, t) is given by the Maass-Selberg relations.
The above properties of the real analytic Eisenstein series, i.e. the functional equation for E(z,s) and E*(z,s) using Laplacian on H, are shown from the fact that E(z,s) has a Fourier expansion:
where
and modified Bessel functions
The Epstein zeta function ζQ(s) ( Epstein 1903 ) for a positive definite integral quadratic form Q(m, n) = cm2 + bmn +an2 is defined by
It is essentially a special case of the real analytic Eisenstein series for a special value of z, since
for
This zeta function was named after Paul Epstein.
The real analytic Eisenstein series E(z, s) is really the Eisenstein series associated to the discrete subgroup SL(2,Z) of SL(2,R). Selberg described generalizations to other discrete subgroups Γ of SL(2,R), and used these to study the representation of SL(2,R) on L2(SL(2,R)/Γ). Langlands extended Selberg's work to higher dimensional groups; his notoriously difficult proofs were later simplified by Joseph Bernstein.
In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,
In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as
In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:
In mathematics, the Clausen function, introduced by Thomas Clausen, is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.
In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by
In mathematics, in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number having real part > 0:
In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.
In mathematics, the Selberg trace formula, introduced by Selberg (1956), is an expression for the character of the unitary representation of a Lie group G on the space L2(Γ\G) of square-integrable functions, where Γ is a cofinite discrete group. The character is given by the trace of certain functions on G.
Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generalized in the theory of automorphic forms.
In mathematics, a rational zeta series is the representation of an arbitrary real number in terms of a series consisting of rational numbers and the Riemann zeta function or the Hurwitz zeta function. Specifically, given a real number x, the rational zeta series for x is given by
In mathematics, the classical Kronecker limit formula describes the constant term at s = 1 of a real analytic Eisenstein series in terms of the Dedekind eta function. There are many generalizations of it to more complicated Eisenstein series. It is named for Leopold Kronecker.
In number theory, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula
In mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises.
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann, after whom it is named.
In mathematics, Maass forms or Maass wave forms are studied in the theory of automorphic forms. Maass forms are complex-valued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup of as modular forms. They are eigenforms of the hyperbolic Laplace operator defined on and satisfy certain growth conditions at the cusps of a fundamental domain of . In contrast to modular forms, Maass forms need not be holomorphic. They were studied first by Hans Maass in 1949.
In mathematics, the modular lambda function λ(τ) is a highly symmetric Holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve , where the map is defined as the quotient by the [−1] involution.