Kukharenkoite-(Ce)

Last updated
Kukharenkoite-(Ce)
Kukharenkoite-(Ce)-479622.jpg
Kukharenkoite-(Ce) from Demix-Varennes quarry, Montérégie, Québec
General
Category Carbonate minerals
Formula
(repeating unit)
Ba2CeF(CO3)3
IMA symbol Kkk-Ce [1]
Strunz classification 5.BD.10
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group P21/m
Identification
References [2] [3] [4]

Kukharenkoite-(Ce) is a barium cerium fluoride carbonate mineral, formula Ba2CeF(CO3)3. It was identified from samples found in the Mont-Saint-Hilaire alkaline intrusive complex, Quebec, and the Khibiny Massif, Kola peninsula, Russia. It was named for Russian mineralogist Alexander A. Kukharenko (1914–1993). [3] [4]

The similar zhonghuacerite, a cerium containing mineral from China, is considered to be either kukharenkoite-(Ce) or huanghoite-(Ce) rather than a valid mineral. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Euxenite</span> Oxide mineral

Euxenite, or euxenite-(Y), is a brownish black mineral with a metallic luster.

<span class="mw-page-title-main">Gadolinite</span> Nesosilicate mineral

Gadolinite, sometimes known as ytterbite, is a silicate mineral consisting principally of the silicates of cerium, lanthanum, neodymium, yttrium, beryllium, and iron with the formula (Ce,La,Nd,Y)2FeBe2Si2O10. It is called gadolinite-(Ce) or gadolinite-(Y), depending on the prominent composing element. It may contain 35.5% yttria sub-group rare earths, 2.2% ceria earths, as much as to 11.6% BeO, and traces of thorium. It is found in Sweden, Norway, and the US.

<span class="mw-page-title-main">Abenakiite-(Ce)</span> Cyclosilicate mineral

Abenakiite-(Ce) is a mineral of sodium, cerium, neodymium, lanthanum, praseodymium, thorium, samarium, oxygen, sulfur, carbon, phosphorus, and silicon with a chemical formula Na26Ce6(SiO3)6(PO4)6(CO3)6(S4+O2)O. The silicate groups may be given as the cyclic Si6O18 grouping. The mineral is named after the Abenaki, an Algonquian Indian tribe of New England. Its Mohs scale rating is 4 to 5.

Aeschynite-(Ce) is a rare earth mineral of cerium, calcium, iron, thorium, titanium, niobium, oxygen, and hydrogen with chemical formula (Ce,Ca,Fe,Th)(Ti,Nb)2(O,OH)6. Its name comes from the Greek word αισχύνη ("aeschyne") for "shame" because early chemists had difficulty with separations of titanium from zirconium.

Fluocerite, also known as tysonite, is a mineral consisting of cerium and lanthanum fluorides, with the chemical formula (Ce,La)F3. The end members are classified as two different mineral types depending on the cation, fluocerite-(Ce) and fluocerite-(La), corresponding respectively to lanthanum trifluoride and cerium trifluoride. Both crystallize in the trigonal system.

<span class="mw-page-title-main">Cerite</span> Silicate mineral group containing cerium

Cerite is a complex silicate mineral group containing cerium, formula (Ce,La,Ca)
9
(Mg,Fe3+
)(SiO
4
)
6
(SiO
3
OH)(OH)
3
. The cerium and lanthanum content varies with the Ce rich species and the La rich species. Analysis of a sample from the Mountain Pass carbonatite gave 35.05% Ce
2
O
3
and 30.04% La
2
O
3
.

<span class="mw-page-title-main">Mckelveyite-(Y)</span>

Mckelveyite-(Y) is a hydrated sodium, barium, yttrium, and uranium–containing carbonate mineral, with the chemical formula Ba3Na(Ca,U)Y(CO3)6·3H2O.

<span class="mw-page-title-main">Davidite</span>

Davidite is a rare earth oxide mineral with chemical end members Lanthanum (La) and Cerium (Ce). It exists in two forms:

<span class="mw-page-title-main">Loparite-(Ce)</span> Oxide mineral

Loparite-(Ce) is a granular, brittle oxide mineral of the perovskite class. It is black to dark grey and may appear grey to white in reflected light on polished thin section with reddish brown internal reflections. It has the chemical formula of (Ce,Na,Ca)(Ti,Nb)O3. Nioboloparite is a variation of loparite-(Ce) containing niobium.

<span class="mw-page-title-main">Ancylite</span> Group of hydrous strontium carbonate minerals

Ancylite is a group of hydrous strontium carbonate minerals containing cerium, lanthanum and minor amounts of other rare-earth elements. The chemical formula is Sr(Ce,La)(CO3)2(OH)·H2O with ancylite-Ce enriched in cerium and ancylite-La in lanthanum.

Alluaivite is a rare mineral of the eudialyte group, with complex formula written as Na19(Ca,Mn)6(Ti,Nb)3Si26O74Cl·2H2O. It is unique among the eudialyte group as the only titanosilicate (other representatives of the group are usually zirconosilicates). The two dual-nature minerals of the group, being both titano- and zirconosilicates, are labyrinthite and dualite. They both contain alluaivite module in their structures. Alluaivite is named after Mt. Alluaiv in Lovozero Tundry massif, Kola Peninsula, Russia, where it is found in ultra-agpaitic, hyperalkaline pegmatites.

<span class="mw-page-title-main">Zirsilite-(Ce)</span>

Zirsilite-(Ce) is a very rare mineral of the eudialyte group, with formula (Na,□)12(Ce,Na)3Ca6Mn3Zr3NbSi(Si9O27)2(Si3O9)2O(OH)3(CO3)·H2O. The original formula was extended to show the presence of cyclic silicate groups and the presence of silicon at the M4 site, according to the nomenclature of the eudialyte group. Zirsilite-(Ce) differs from carbokentbrooksite in cerium-dominance over sodium only. Both minerals are intimately associated. The only other currently known representative of the eudialyte group having rare earth elements (in particular cerium, as suggested by the "-Ce)" Levinson suffix in the name) in dominance is johnsenite-(Ce).

Florencite-(Sm) is a very rare mineral of the plumbogummite group (alunite supergroup) with simplified formula SmAl3(PO4)2(OH)6. Samarium in florencite-(Sm) is substituted by other rare earth elements, mostly neodymium. It does not form separate crystals, but is found as zones in florencite-(Ce), which is cerium-dominant member of the plumbogummite group. Florencite-(Sm) is also a samarium-analogue of florencite-(La) (lanthanum-dominant) and waylandite (bismuth-dominant), both being aluminium-rich minerals.

Anzaite-(Ce) is a rare-earth element (REE) oxide mineral with the formula Ce4Fe2+Ti6O18(OH)2. An example of chemically related mineral is lucasite-(Ce), although it contains no iron. Cerium in anzaite-(Ce) is mainly substituted by neodymium, lanthanum, calcium and praseodymium. Titanium is substituted by niobium. Trace elements include thorium. The mineral is monoclinic, space group C2/m. Anzaite-(Ce) is hydrothermal mineral found in a carbonatite from the mineralogically prolific Kola Peninsula. The mineral name honors Anatoly N. Zaitsev, who is known for studies of carbonatites and REE.

<span class="mw-page-title-main">Cerianite-(Ce)</span> Oxide mineral

Cerianite-(Ce) is a relatively rare oxide mineral, belonging to uraninite group with the formula (Ce,Th)O
2
. It is one of a few currently known minerals containing essential tetravalent cerium, the other examples being stetindite and dyrnaesite-(La).

Dyrnaesite-(La) is a rare-earth phosphate mineral with the formula Na
8
Ce4+
(La,REE)
2
(PO
4
)
6
. Dyrnaesite-(La) is related to vitusite-(Ce), another rare-earth phosphate mineral. It comes from lujavrite, a type of alkaline syenite rock, of South Greenland. Dyrnaesite-(La) is one of few known minerals with essential tetravalent cerium, the other two being cerianite-(Ce) and stetindite.

<span class="mw-page-title-main">Parisite-(La)</span> Carbonate-fluoride mineral

Parisite-(La) is mineral discovered by Daniel Atencio of the University of São Paulo and colleagues in the Mula claim, Bahia, Brazil. Parisite-(La) is the lanthanum analog of parisite-(Ce), which has the same structure, but with cerium substituted for lanthanum. Parisite-(La) is chemically similar to synchysite-(La).

<span class="mw-page-title-main">Monazite-(Ce)</span> Crystalline CePO4

Monazite-(Ce) (CePO4) is the most common representative of the monazite group. It is the cerium-dominant analogue of monazite-(La), monazite-(Nd), and monazite-(Sm). It is also the phosphorus analogue of gasparite-(Ce). The group contains simple rare earth phosphate minerals with the general formula of AXO4, where A = Ce, La, Nd, or Sm (or, rarely, Bi), and X = P or, rarely, As. The A site may also bear Ca and Th.

<span class="mw-page-title-main">Britholite-(Ce)</span>

Britholite-(Ce) is a rare radioactive mineral with the chemical formula (Ce,Ca)5(SiO4)3OH. It comes in a variety of different colors. Its type locality is Naujakasik (Naajakasik), Tunulliarfik Fjord, Ilímaussaq complex, Narsaq, Kujalleq, Greenland.

<span class="mw-page-title-main">Belovite-(Ce)</span>

Belovite-(Ce) is the cerium analogue of belovite-(La). It is a member in the belovite group being a subgroup of the apatite group.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Mineralienatlas
  3. 1 2 Mindat with location data
  4. 1 2 Webmineral data
  5. Mindat - Zhonghuacerite-(Ce)