Kummer's congruence

Last updated

In mathematics, Kummer's congruences are some congruences involving Bernoulli numbers, found by Ernst Eduard Kummer. [1]

Contents

Kubota & Leopoldt (1964) used Kummer's congruences to define the p-adic zeta function. [2]

Statement

The simplest form of Kummer's congruence states that

where p is a prime, h and k are positive even integers not divisible by p−1 and the numbers Bh are Bernoulli numbers.

More generally if h and k are positive even integers not divisible by p  1, then

whenever

where φ(pa+1) is the Euler totient function, evaluated at pa+1 and a is a non negative integer. At a = 0, the expression takes the simpler form, as seen above. The two sides of the Kummer congruence are essentially values of the p-adic zeta function, and the Kummer congruences imply that the p-adic zeta function for negative integers is continuous, so can be extended by continuity to all p-adic integers.

See also

References

  1. Kummer, Ernst Eduard (1851), "Über eine allgemeine Eigenschaft der rationalen Entwicklungscoëfficienten einer bestimmten Gattung analytischer Functionen" , Journal für die Reine und Angewandte Mathematik, 41: 368–372, doi:10.1515/crll.1851.41.368, ISSN   0075-4102, ERAM   041.1136cj
  2. Kubota, Tomio; Leopoldt, Heinrich-Wolfgang (1964), "Eine p-adische Theorie der Zetawerte. I. Einführung der p-adischen Dirichletschen L-Funktionen" , Journal für die reine und angewandte Mathematik , 214/215: 328–339, doi:10.1515/crll.1964.214-215.328, ISSN   0075-4102, MR   0163900