In mathematics, Kuratowski's intersection theorem is a result in general topology that gives a sufficient condition for a nested sequence of sets to have a non-empty intersection. Kuratowski's result is a generalisation of Cantor's intersection theorem. Whereas Cantor's result requires that the sets involved be compact, Kuratowski's result allows them to be non-compact, but insists that their non-compactness “tends to zero” in an appropriate sense. The theorem is named for the Polish mathematician Kazimierz Kuratowski, who proved it in 1930.
Let (X, d) be a complete metric space. Given a subset A ⊆ X, its Kuratowski measure of non-compactness α(A) ≥ 0 is defined by
Note that, if A is itself compact, then α(A) = 0, since every cover of A by open balls of arbitrarily small diameter will have a finite subcover. The converse is also true: if α(A) = 0, then A must be precompact, and indeed compact if A is closed. Also, if A is a subset of B, then α(A) ≤ α(B). In some sense, the quantity α(A) is a numerical description of “how non-compact” the set A is.
Now consider a sequence of sets An ⊆ X, one for each natural number n. Kuratowski's intersection theorem asserts that if these sets are non-empty, closed, decreasingly nested (i.e. An+1 ⊆ An for each n), and α(An) → 0 as n → ∞, then their infinite intersection
is a non-empty compact set.
The result also holds if one works with the ball measure of non-compactness or the separation measure of non-compactness, since these three measures of non-compactness are mutually Lipschitz equivalent; if any one of them tends to zero as n → ∞, then so must the other two.
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "holes" or "missing endpoints", i.e. that the space not exclude any "limiting values" of points. For example, the "unclosed" interval (0,1) would not be compact because it excludes the "limiting values" of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact because it has infinitely many "holes" corresponding to the irrational numbers, and the space of real numbers is not compact either because it excludes the limiting values and . However, the extended real number line would be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in Euclidean space, but may be inequivalent in other topological spaces.
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883.
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example,
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of n-dimensional Euclidean space. For n = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called n-dimensional volume, n-volume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by λ(A).
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.
In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The pair is called a measurable space.
The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space.
In functional analysis, two measures of non-compactness are commonly used; these associate numbers to sets in such a way that compact sets all get the measure 0, and other sets get measures that are bigger according to "how far" they are removed from compactness.
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, ∅ and all singletons {α}, α ∈ κ are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large.
In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set , the set of all subsets of the power set of has a strictly greater cardinality than itself.
In general topology, a branch of mathematics, a non-empty family A of subsets of a set is said to have the finite intersection property (FIP) if the intersection over any finite subcollection of is non-empty. It has the strong finite intersection property (SFIP) if the intersection over any finite subcollection of is infinite.
In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians—Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory.
In mathematics, the Hausdorff distance, or Hausdorff metric, also called Pompeiu–Hausdorff distance, measures how far two subsets of a metric space are from each other. It turns the set of non-empty compact subsets of a metric space into a metric space in its own right. It is named after Felix Hausdorff and Dimitrie Pompeiu.
In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets.
In mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are nonnegative real constants C, α > 0, such that
In general topology, a subset of a topological space is perfect if it is closed and has no isolated points. Equivalently: the set is perfect if , where denotes the set of all limit points of , also known as the derived set of .
Riesz's lemma is a lemma in functional analysis. It specifies conditions that guarantee that a subspace in a normed vector space is dense. The lemma may also be called the Riesz lemma or Riesz inequality. It can be seen as a substitute for orthogonality when one is not in an inner product space.
In mathematics, Kuratowski convergence is a notion of convergence for sequences of compact subsets of metric spaces, named after Kazimierz Kuratowski. Intuitively, the Kuratowski limit of a sequence of sets is where the sets "accumulate".
Cantor's intersection theorem refers to two closely related theorems in general topology and real analysis, named after Georg Cantor, about intersections of decreasing nested sequences of non-empty compact sets.
This is a glossary of set theory.