Kurt Petersen (inventor)

Last updated
Kurt Petersen
Kurt-Egypt-1.jpg
Born (1948-02-13) February 13, 1948 (age 75)
Education University of California, Berkeley
Occupationinventor

Kurt E. Petersen (born February 13, 1948) is an American inventor and entrepreneur. He is known primarily for his work on microelectromechanical systems. Petersen was elected a member of the United States National Academy of Engineering in 2001.

Contents

Biography

Petersen received his BS degree cum laude in Electrical Engineering from The University of California at Berkeley in 1970. In 1975, he received a PhD degree in EE from the Massachusetts Institute of Technology. He established a micromachining research group at IBM from 1975 to 1982, during which he wrote the review paper “Silicon as a Mechanical Material,” published in the IEEE Proceedings (May 1982). [1] This paper is a highly referenced work in the field of micromachining and micro-electro-mechanical systems (MEMS); it is considered to have helped establish MEMS as its own branch of technology. [2] As of September 2017, Google Scholar reported 3,795 citations.

Career

Since 1982, Dr. Petersen has co-founded six successful companies in MEMS technology, including Transensory Devices Inc. in 1982 and NovaSensor, a company which develops low-cost micromachined blood pressure sensors using bulk silicon micromachining technology, in 1985. [3] [4] In 1996, he co-founded Cepheid, a company which uses microfluidic technology for rapid PCR detection. [5] Dr. Petersen also co-founded SiTime in 2004 and Profusa in 2008. [6] In 2009, he co-founded Verreon and joined as Chief Technology Officer, helping to coordinate the company’s sale to Qualcomm in 2010. [2]

In 2011, Petersen joined the Band of Angels in Silicon Valley, an angel investment group which mentors and invests in early stage, high-tech, start-up companies. He served as co-chair for the Band of Angel’s hardware subgroup. [2] He joined the Board of Directors for Innovative Micro Technology (IMT) in 2013. [7] [8]

Dr. Petersen has published over 100 papers and has been granted over 35 patents over the course of his career. He is a member of the National Academy of Engineering and is a Fellow of the IEEE. [2]

Honours

In 2001, he was elected a member of the United States National Academy of Engineering for "contributions to the research and commercialization of microelectromechanical systems (MEMS)," and he received the Fellowship of the IEEE in recognition of his contributions “for pioneering contributions and successful commercialization of micromechanical systems”. [9] [10] That same year, he was awarded the IEEE Simon Ramo Medal. [11]

In 2002, Red Herring ranked him as a Top Ten Innovator. [12] [13] In 2019, Petersen received the IEEE Medal of Honor. [2]

Related Research Articles

<span class="mw-page-title-main">MEMS</span> Very small devices that incorporate moving components

MEMS is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometers in size, and MEMS devices generally range in size from 20 micrometres to a millimetre, although components arranged in arrays can be more than 1000 mm2. They usually consist of a central unit that processes data and several components that interact with the surroundings.

<span class="mw-page-title-main">Micromachinery</span> Mechanical objects that are very small

Micromachines are mechanical objects that are fabricated in the same general manner as integrated circuits. They are generally considered to be between 100 nanometres to 100 micrometres in size, though that is debatable. The applications of micromachines include accelerometers that detect when a car has hit an object and trigger an airbag. Complex systems of gears and levers are another application.

Surface micromachining builds microstructures by deposition and etching structural layers over a substrate. This is different from Bulk micromachining, in which a silicon substrate wafer is selectively etched to produce structures.

<span class="mw-page-title-main">Microfabrication</span>

Microfabrication is the process of fabricating miniature structures of micrometre scales and smaller. Historically, the earliest microfabrication processes were used for integrated circuit fabrication, also known as "semiconductor manufacturing" or "semiconductor device fabrication". In the last two decades microelectromechanical systems (MEMS), microsystems, micromachines and their subfields, microfluidics/lab-on-a-chip, optical MEMS, RF MEMS, PowerMEMS, BioMEMS and their extension into nanoscale have re-used, adapted or extended microfabrication methods. Flat-panel displays and solar cells are also using similar techniques.

Masayoshi Esashi is an engineer. He is a global authority of Microelectromechanical systems and serves as the professor of the Tohoku University graduate school engineering graduate course.

Microoptoelectromechanical systems (MOEMS), also known as optical MEMS, are integrations of mechanical, optical, and electrical systems that involve sensing or manipulating optical signals at a very small size. MOEMS includes a wide variety of devices, for example optical switch, optical cross-connect, tunable VCSEL, microbolometers. These devices are usually fabricated using micro-optics and standard micromachining technologies using materials like silicon, silicon dioxide, silicon nitride and gallium arsenide.

<span class="mw-page-title-main">Kristofer Pister</span>

Kristofer S. J. Pister is a professor of electrical engineering and computer sciences at University of California, Berkeley and the founder and CTO of Dust Networks. He is known for his academic work on Microelectromechanical systems (MEMS), their simulation, his work on Smartdust, and his membership in the JASON Defense Advisory Group. He is the son of former Berkeley Dean of Engineering and former UC Chancellor Karl Pister.

<span class="mw-page-title-main">Mike A. Horton</span>

Mike A. Horton is an American engineer and founder of a company producing sensor technology and sensor-based systems.

<span class="mw-page-title-main">MEMS magnetic field sensor</span>

A MEMSmagnetic field sensor is a small-scale microelectromechanical systems (MEMS) device for detecting and measuring magnetic fields (Magnetometer). Many of these operate by detecting effects of the Lorentz force: a change in voltage or resonant frequency may be measured electronically, or a mechanical displacement may be measured optically. Compensation for temperature effects is necessary. Its use as a miniaturized compass may be one such simple example application.

Mark G. Allen is a professor specializing in microfabrication, nanotechnology, and microelectromechanical systems at the University of Pennsylvania, where he is currently Alfred Fitler Moore Professor of Electrical and Systems Engineering Director of the Singh Center for Nanotechnology, and leader of the Microsensor and Microactuator Research Group. Prior to his joining the University of Pennsylvania in 2013, he was with the Georgia Institute of Technology, where he was Regents' Professor of Electrical and Computer Engineering and the J.M. Pettit Professor in Microelectronics. While at Georgia Tech, he also held multiple administrative positions, including Senior Vice Provost for Research and Innovation; Acting Director of the Georgia Electronic Design Center; and Inaugural Executive Director of Georgia Tech's Institute for Electronics and Nanotechnology. He was editor in chief of the Journal of Micromechanics and Microengineering (JMM), and currently serves on the editorial board of JMM as well as the journal Microsystems and Nanoengineering.

Microelectromechanical system oscillators are devices that generate highly stable reference frequencies to measure time. The core technologies used in MEMS oscillators have been in development since the mid-1960s, but have only been sufficiently advanced for commercial applications since 2006. MEMS oscillators incorporate MEMS resonators, which are microelectromechanical structures that define stable frequencies. MEMS clock generators are MEMS timing devices with multiple outputs for systems that need more than a single reference frequency. MEMS oscillators are a valid alternative to older, more established quartz crystal oscillators, offering better resilience against vibration and mechanical shock, and reliability with respect to temperature variation.

<span class="mw-page-title-main">Richard S. Muller</span>

Richard Stephen Muller is an American professor in the Electrical Engineering and Computer Science Department of the University of California at Berkeley.

A nanoelectromechanical (NEM) relay is an electrically actuatedswitch that is built on the nanometer scale using semiconductor fabrication techniques. They are designed to operate in replacement of, or in conjunction with, traditional semiconductor logic. While the mechanical nature of NEM relays makes them switch much slower than solid-state relays, they have many advantageous properties, such as zero current leakage and low power consumption, which make them potentially useful in next generation computing.

<span class="mw-page-title-main">Roger T. Howe</span>

Roger Thomas Howe is the William E. Ayer Professor of Electrical Engineering at Stanford University. He earned a B.S. degree in physics from Harvey Mudd College and M.S. and Ph.D. degrees in electrical engineering from the University of California, Berkeley in 1981 and 1984, respectively. He was a faculty member at Carnegie-Mellon University in 1984-1985, at the Massachusetts Institute of Technology from 1985-1987, and at UC Berkeley between 1987-2005, where he was the Robert S. Pepper Distinguished Professor. He has been a member of the faculty of the School of Engineering at Stanford since 2005.

<span class="mw-page-title-main">Andrei Shkel</span>

Andrei M. Shkel is a Professor of Mechanical and Aerospace Engineering at the University of California, Irvine. He was named Fellow of the Institute of Electrical and Electronics Engineers (IEEE) in 2014 "for contributions to micromachined gyroscopes". He served as the President of the IEEE Sensors Council (2020-2021). In 2021, he was elected to National Academy of Inventors (NAI) Fellow status. He is currently the Editor-in-Chief of the IEEE Sensors Letters.

Srinivas Tadigadapa is a professor and chair of the Department of Electrical and Computer Engineering at Northeastern University in Boston, Massachusetts. From 2000 to 2017 he was a professor of electrical engineering at Penn State University. Prior to that, he was the vice president of manufacturing at Integrated Sensing Systems Inc., and was involved with the design, fabrication, packaging, reliability, and manufacturing of micromachined silicon pressure and Coriolis flow sensors.

A piezoelectric microelectromechanical system (piezoMEMS) is a miniature or microscopic device that uses piezoelectricity to generate motion and carry out its tasks. It is a microelectromechanical system that takes advantage of an electrical potential that appears under mechanical stress. PiezoMEMS can be found in a variety of applications, such as switches, inkjet printer heads, sensors, micropumps, and energy harvesters.

Albert P. Pisano is an American academic. He serves as dean of the Jacobs School of Engineering at the University of California San Diego, a position he has held since September 2013. Pisano publishes a monthly Dean's column that introduces the monthly news email from the UC San Diego Jacobs School of Engineering. The January 2022 dean's column, "Math matters to all of us" triggered significant conversation on Pisano's LinkedIn feed.

Vapor etching refers to a process used in the fabrication of Microelectromechanical systems (MEMS) and Nanoelectromechanical systems (NEMS). Sacrificial layers are isotropically etched using gaseous acids such as Hydrogen fluoride and Xenon difluoride to release the free standing components of the device.

<span class="mw-page-title-main">Ha Duong Ngo</span>

Ha Duong Ngo is an academician, research scholar in the field of Electrical Engineering/Microsystems Engineering.

References

  1. Petersen, Kurt (May 1982). "Silicon as a mechanical material". Proceedings of the IEEE. 70 (5): 420–457. Bibcode:1982IEEEP..70..420P. doi:10.1109/PROC.1982.12331. S2CID   15378788.
  2. 1 2 3 4 5 Perry, Tekla S. (April 23, 2019). "Kurt Petersen, 2019 IEEE Medal of Honor Recipient, Is Mr. MEMS". IEEE Spectrum. Retrieved June 16, 2021.
  3. Hariz, Alex (2001). "State of commercialization of MEMS: Present and future prospects". In Bergmann, Neil W; Abbott, Derek; Hariz, Alex; Varadan, Vijay K (eds.). Electronics and Structures for MEMS II. Vol. 4591. pp. 39–44. doi:10.1117/12.449172. S2CID   110576142.
  4. Petersen, Kurt. "General Electric pressure sensor product listings". GE pressure sensors. General Electric. Archived from the original on 4 August 2014. Retrieved 27 August 2014.
  5. "Cepheid | Enabling Access to Molecular Diagnostic Testing Everywhere".
  6. "SiTime is Now a Wholly Owned Subsidiary of MegaChips | SiTime". Archived from the original on 2019-03-22.
  7. "Band of Angels". Archived from the original on 2014-07-01. Retrieved 2014-08-27.
  8. "MEMS Industry Pioneer and Technology Visionary Kurt Petersen Joins IMT Board of Directors" (Press release). 30 April 2013.
  9. Petersen, Kurt. "US National Academy of Engineering member profile". United States National Academy of Engineering. National Academy of Engineering. Retrieved 27 August 2014.
  10. "IEEE Fellows Directory - Alphabetical Listing".
  11. "Corporate Awards". Institute of Electrical and Electronics Engineers (IEEE).
  12. "Notable inventors: Dr. Kurt PETERSEN".
  13. "News" (Press release).