LAPB

Last updated
LAPB state Diagram LAPBstateDiagram.JPG
LAPB state Diagram

Link Access Procedure, Balanced (LAPB) implements the data link layer as defined in the X.25 protocol suite. LAPB is a bit-oriented protocol derived from HDLC that ensures that frames are error free and in the correct sequence. LAPB is specified in ITU-T Recommendation X.25 and ISO/IEC 7776. It implements the connection-mode data link service in the OSI Reference Model as defined by ITU-T Recommendation X.222.

Contents

LAPB is used to manage communication and packet framing between data terminal equipment (DTE) and the data circuit-terminating equipment (DCE) devices in the X.25 protocol stack. LAPB is essentially HDLC in Asynchronous Balanced Mode (ABM). LAPB sessions can be established by either the DTE or DCE. The station initiating the call is determined to be the primary, and the responding station is the secondary.

Protocol structure

Frame types

Frame format

FlagAddressControlDataChecksumFlag
0111 11100111 1110
(8 bits)(8 bits)(8 bits)(Variable)(16 bits)(8 bits)

Flag – The value of the flag is always 0x7E. In order to ensure that the bit pattern of the frame delimiter flag does not appear in the data field of the frame (and therefore cause frame misalignment), a technique known as Bit stuffing is used by both the transmitter and the receiver.

Address field – In LAPB, this field has no meaning since the protocol works in a point to point mode and the DTE network address is represented in the layer 3 packets. This byte is therefore put to a different use; it separates the link commands from the responses and can have only two values: 0x01 and 0x03. 01 identifies frames containing commands from DTE to DCE and responses to these commands from DCE to DTE. 03 is used for frames containing commands from DCE to DTE and for responses from DTE to DCE. Therefore, one side must be configured as a Layer 2 DTE and the other as a Layer 2 DCE (you must not confuse this with the more familiar Layer 1 DCE and DTE designations).

Control field – it serves to identify the type of the frame. In addition, it includes sequence numbers, control features and error tracking according to the frame type.

Modes of operation – LAPB works in the Asynchronous Balanced Mode (ABM). This mode is balanced (i.e., no master/slave relationship) and is signified by the SABM(E)/SM frame. Each station may initialize, supervise, recover from errors, and send frames at any time. The DTE and DCE are treated as equals.

FCS – The Frame Check Sequence enables a high level of physical error control by allowing the integrity of the transmitted frame data to be checked.

Window size – LAPB supports an extended window size (modulo 128 and modulo 32768) where the maximum number of outstanding frames for acknowledgment is raised from 7 (modulo 8) to 127 (modulo 128) and 32767 (modulo 32768). [1]

Protocol operation

LAPB has no master/slave node relationships. The sender uses the Poll bit in command frames to insist on an immediate response. In the response frame this same bit becomes the receivers Final bit. The receiver always turns on the Final bit in its response to a command from the sender with the Poll bit set. The P/F bit is generally used when either end becomes unsure about proper frame sequencing because of a possible missing acknowledgment, and it is necessary to re-establish a point of reference. It is also used to trigger an acknowledgment of outstanding I-frames.

Node addressing

The following table shows which addresses are placed into the LAPB frame when issuing commands and responses from DTE to DCE and DCE to DTE using single link operation or multilink operation: [2]

DirectionSingle link operationMultilink operation
CommandResponseCommandResponse
DTE-DCE01 Hex (B)03 Hex (A)07 Hex (D)0F Hex (C)
DCE-DTE03 Hex (A)01 Hex (B)0F Hex (C)07 Hex (D)

Protocol commands and responses

TypeCommandsResponseInfo
SupervisoryRRRRacknowledges the reception of a frame and indicates that the device is ready to receive the next one in the sequence
RNRRNRacknowledges a received frame but it indicates that it cannot receive any more I-frames because it is still busy
REJREJrequests the retransmission of I-frames, the packet contains the error frame so that the DTE will retransmit all packets since the error frame
SREJrequests the retransmission of selected I-frames, the packet contains the specific frames that the DTE will retransmit (not used for modulo 8, optional for modulo 128, mandatory for modulo 32768)
UnnumberedSABMUAestablish the DTE to DCE link in Normal (Basic) mode (modulo 8)
SABMEUAestablish the DTE to DCE link in Extended mode (modulo 128)
SMUAestablish the DTE to DCE link in Super mode (modulo 32768)
DISCDMterminates the link
FRMRFrame Reject, which reports an error condition
InformationI
Command frame sent with P = 1Response frame returned with F = 1Info
SABM, SABME, SMUA, DM
I-frameRR, RNR, REJ, SREJ
I-frameFRMR
RR, RNR, REJRR, RNR, REJ, SREJ
FRMRFRMR
DISCUA, DM

See also

Related Research Articles

IEEE 802.2 is the original name of the ISO/IEC 8802-2 standard which defines logical link control (LLC) as the upper portion of the data link layer of the OSI Model. The original standard developed by the Institute of Electrical and Electronics Engineers (IEEE) in collaboration with the American National Standards Institute (ANSI) was adopted by the International Organization for Standardization (ISO) in 1998, but it remains an integral part of the family of IEEE 802 standards for local and metropolitan networks.

In computer networking, Point-to-Point Protocol (PPP) is a data link layer communication protocol between two routers directly without any host or any other networking in between. It can provide connection authentication, transmission encryption, and data compression.

In telecommunications, RS-232 or Recommended Standard 232 is a standard originally introduced in 1960 for serial communication transmission of data. It formally defines signals connecting between a DTE such as a computer terminal, and a DCE, such as a modem. The standard defines the electrical characteristics and timing of signals, the meaning of signals, and the physical size and pinout of connectors. The current version of the standard is TIA-232-F Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange, issued in 1997. The RS-232 standard had been commonly used in computer serial ports and is still widely used in industrial communication devices.

Frame Relay Wide area network technology

Frame Relay is a standardized wide area network (WAN) technology that specifies the physical and data link layers of digital telecommunications channels using a packet switching methodology. Originally designed for transport across Integrated Services Digital Network (ISDN) infrastructure, it may be used today in the context of many other network interfaces.

In telecommunication, Advanced Data Communication Control Procedures (ADCCP) is a bit-oriented data link layer protocol developed by the American National Standards Institute. It is functionally equivalent to the ISO High-Level Data Link Control (HDLC) protocol.

<span class="mw-page-title-main">X.25</span> Standard protocol suite for packet switched wide area network (WAN) communication

X.25 is an ITU-T standard protocol suite for packet-switched data communication in wide area networks (WAN). It was originally defined by the International Telegraph and Telephone Consultative Committee in a series of drafts and finalized in a publication known as The Orange Book in 1976.

High-Level Data Link Control (HDLC) is a bit-oriented code-transparent synchronous network layer protocol developed by the International Organization for Standardization (ISO). The standard for HDLC is ISO/IEC 13239:2002.

In the IEEE 802 reference model of computer networking, the logical link control (LLC) data communication protocol layer is the upper sublayer of the data link layer of the seven-layer OSI model. The LLC sublayer acts as an interface between the media access control (MAC) sublayer and the network layer.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer.

AX.25 is a data link layer protocol originally derived from layer 2 of the X.25 protocol suite and designed for use by amateur radio operators. It is used extensively on amateur packet radio networks.

Synchronous Data Link Control (SDLC) is a computer communications protocol. It is the layer 2 protocol for IBM's Systems Network Architecture (SNA). SDLC supports multipoint links as well as error correction. It also runs under the assumption that an SNA header is present after the SDLC header. SDLC was mainly used by IBM mainframe and midrange systems; however, implementations exist on many platforms from many vendors. The use of SDLC is becoming more and more rare, mostly replaced by IP-based protocols or being tunneled through IP. In the United States and Canada, SDLC can be found in traffic control cabinets.

A universal synchronous and asynchronous receiver-transmitter is a type of a serial interface device that can be programmed to communicate asynchronously or synchronously. See universal asynchronous receiver-transmitter (UART) for a discussion of the asynchronous capabilities of these devices.

CRC-based framing is a kind of frame synchronization used in Asynchronous Transfer Mode (ATM) and other similar protocols.

Generic Framing Procedure (GFP) is a multiplexing technique defined by ITU-T G.7041. This allows mapping of variable length, higher-layer client signals over a circuit switched transport network like OTN, SDH/SONET or PDH. The client signals can be protocol data unit (PDU) oriented or can be block-code oriented.

Binary Synchronous Communication is an IBM character-oriented, half-duplex link protocol, announced in 1967 after the introduction of System/360. It replaced the synchronous transmit-receive (STR) protocol used with second generation computers. The intent was that common link management rules could be used with three different character encodings for messages. Six-bit Transcode looked backwards to older systems; USASCII with 128 characters and EBCDIC with 256 characters looked forward. Transcode disappeared very quickly but the EBCDIC and USASCII dialects of Bisync continued in use.

Link Access Procedure for Modems (LAPM) is part of the V.42 error correction protocol for modems.

Cisco HDLC (cHDLC) is an extension to the High-Level Data Link Control (HDLC) network protocol, and was created by Cisco Systems, Inc. HDLC is a bit-oriented synchronous data link layer protocol that was originally developed by the International Organization for Standardization (ISO). Often described as being a proprietary extension, the details of cHDLC have been widely distributed and the protocol has been implemented by many network equipment vendors. cHDLC extends HDLC with multi-protocol support.

Packet Layer Protocol or PLP is the Network Layer protocol for the X.25 protocol suite. PLP manages the packet exchanges between DTE devices across VCs. PLP also can be used on ISDN using Link Access Procedures, D channel (LAPD).

Link Access Procedure (LAP) protocols are Data Link Layer protocols for framing and transmitting data across point-to-point links. LAP was originally derived from HDLC, but was later updated and renamed LAPB.

IEC 60870 part 5 is one of the IEC 60870 set of standards which define systems used for telecontrol in electrical engineering and power system automation applications. Part 5 provides a communication profile for sending basic telecontrol messages between two systems, which uses permanent directly connected data circuits between the systems. The IEC Technical Committee 57 have developed a protocol standard for telecontrol, teleprotection, and associated telecommunications for electric power systems. The result of this work is IEC 60870-5. Five documents specify the base IEC 60870-5:

References