LIESST

Last updated

In chemistry and physics, LIESST (Light-Induced Excited Spin-State Trapping) is a method of changing the electronic spin state of a compound by means of irradiation with light. [1]

Electron distribution for the two different spin states for a d metal in an idealized Oh geometry Electron distribution in the two different spin states in LIESST for a d6 metal.PNG
Electron distribution for the two different spin states for a d metal in an idealized Oh geometry

Many transition metal complexes with electronic configuration d4-d7 are capable of spin crossover (and d8 when molecular symmetry is lower than Oh). [2] Spin crossover refers to where a transition from the high spin (HS) state to the low spin (LS) state or vice versa occurs. Alternatives to LIESST include using thermal changes and pressure to induce spin crossover. The metal most commonly exhibiting spin crossover is iron, with the first known example, an iron(III) tris(dithiocarbamato) complex, reported by Cambi [3] et al. in 1931.

For iron complexes, LIESST involves excitation of the low spin complex with green light to a triplet state. Two successive steps of intersystem crossing result in the high spin complex. Movement from the high spin complex to the low spin complex requires excitation with red light. [1]

Related Research Articles

In chemistry, a transition metal is a chemical element in the d-block of the periodic table, though the elements of group 12 are sometimes excluded. The lanthanide and actinide elements are called inner transition metals and are sometimes considered to be transition metals as well.

<span class="mw-page-title-main">Phosphorescence</span> Process in which energy absorbed by a substance is released relatively slowly in the form of light

Phosphorescence is a type of photoluminescence related to fluorescence. When exposed to light (radiation) of a shorter wavelength, a phosphorescent substance will glow, absorbing the light and reemitting it at a longer wavelength. Unlike fluorescence, a phosphorescent material does not immediately reemit the radiation it absorbs. Instead, a phosphorescent material absorbs some of the radiation energy and reemits it for a much longer time after the radiation source is removed.

<span class="mw-page-title-main">Photochemistry</span> Sub-discipline of chemistry

Photochemistry is the branch of chemistry concerned with the chemical effects of light. Generally, this term is used to describe a chemical reaction caused by absorption of ultraviolet, visible (400–750 nm), or infrared radiation (750–2500 nm).

<span class="mw-page-title-main">Intersystem crossing</span> Excited state dynamic

Intersystem crossing (ISC) is an isoenergetic radiationless process involving a transition between the two electronic states with different spin multiplicity.

<span class="mw-page-title-main">Photosensitizer</span> Type of molecule reacting to light

Photosensitizers are light absorbers that alter the course of a photochemical reaction. They usually are catalysts. They can function by many mechanisms, sometimes they donate an electron to the substrate, sometimes they abstract a hydrogen atom from the substrate. At the end of this process, the photosensitizer returns to its ground state, where it remains chemically intact, poised to absorb more light. One branch of chemistry which frequently utilizes photosensitizers is polymer chemistry, using photosensitizers in reactions such as photopolymerization, photocrosslinking, and photodegradation. Photosensitizers are also used to generate prolonged excited electronic states in organic molecules with uses in photocatalysis, photon upconversion and photodynamic therapy. Generally, photosensitizers absorb electromagnetic radiation consisting of infrared radiation, visible light radiation, and ultraviolet radiation and transfer absorbed energy into neighboring molecules. This absorption of light is made possible by photosensitizers' large de-localized π-systems, which lowers the energy of HOMO and LUMO orbitals to promote photoexcitation. While many photosensitizers are organic or organometallic compounds, there are also examples of using semiconductor quantum dots as photosensitizers.

In coordination chemistry, Tanabe–Sugano diagrams are used to predict absorptions in the ultraviolet (UV), visible and infrared (IR) electromagnetic spectrum of coordination compounds. The results from a Tanabe–Sugano diagram analysis of a metal complex can also be compared to experimental spectroscopic data. They are qualitatively useful and can be used to approximate the value of 10Dq, the ligand field splitting energy. Tanabe–Sugano diagrams can be used for both high spin and low spin complexes, unlike Orgel diagrams, which apply only to high spin complexes. Tanabe–Sugano diagrams can also be used to predict the size of the ligand field necessary to cause high-spin to low-spin transitions.

<span class="mw-page-title-main">Photomagnetism</span>

Photomagnetism is the effect in which a material acquires its ferromagnetic properties in response to light. The current model for this phenomenon is a light-induced electron transfer, accompanied by the reversal of the spin direction of an electron. This leads to an increase in spin concentration, causing the magnetic transition. Currently the effect is only observed to persist at very low temperature. But at temperatures such as 5K, the effect may persist for several days.

The spin transition is an example of transition between two electronic states in molecular chemistry. The ability of an electron to transit from a stable to another stable electronic state in a reversible and detectable fashion, makes these molecular systems appealing in the field of molecular electronics.

Spin states when describing transition metal coordination complexes refers to the potential spin configurations of the central metal's d electrons. For several oxidation states, metals can adopt high-spin and low-spin configurations. The ambiguity only applies to first row metals, because second- and third-row metals are invariably low-spin. These configurations can be understood through the two major models used to describe coordination complexes; crystal field theory and ligand field theory.

<span class="mw-page-title-main">Spin crossover</span>

Spin crossover (SCO) is a phenomenon that occurs in some metal complexes wherein the spin state of the complex changes due to an external stimulus. The stimuli can include temperature or pressure. Spin crossover is sometimes referred to as spin transition or spin equilibrium behavior. The change in spin state usually involves interchange of low spin (LS) and high spin (HS) configuration.

<span class="mw-page-title-main">Metal L-edge</span>

Metal L-edge spectroscopy is a spectroscopic technique used to study the electronic structures of transition metal atoms and complexes. This method measures X-ray absorption caused by the excitation of a metal 2p electron to unfilled d orbitals, which creates a characteristic absorption peak called the L-edge. Similar features can also be studied by Electron Energy Loss Spectroscopy. According to the selection rules, the transition is formally electric-dipole allowed, which not only makes it more intense than an electric-dipole forbidden metal K pre-edge transition, but also makes it more feature-rich as the lower required energy results in a higher-resolution experiment.

<span class="mw-page-title-main">Iron tetracarbonyl dihydride</span> Chemical compound

Iron tetracarbonyl dihydride is the organometallic compound with the formula H2Fe(CO)4. This compound was the first transition metal hydride discovered. The complex is stable at low temperatures but decomposes rapidly at temperatures above –20 °C.

[6+4] Cycloaddition is a type of cycloaddition between a six-atom pi system and a four-atom pi system, leading to a ten-membered ring. Because this is a higher-order cycloaddition, issues of periselectivity arise in addition to the usual concerns about regio- and stereoselectivity. Six-atom pi systems that have been employed in the reaction include tropone and tropone derivatives, fulvenes, and cycloheptatriene cobalt complexes.

Sulfur mononitride is an inorganic compound with the molecular formula SN. It is the sulfur analogue of and isoelectronic to the radical nitric oxide, NO. It was initially detected in 1975, in outer space in giant molecular clouds and later the coma of comets. This spurred further laboratory studies of the compound. Synthetically, it is produced by electric discharge in mixtures of nitrogen and sulfur compounds, or combustion in the gas phase and by photolysis in solution.

Magnetochemistry is concerned with the magnetic properties of chemical compounds and elements. Magnetic properties arise from the spin and orbital angular momentum of the electrons contained in a compound. Compounds are diamagnetic when they contain no unpaired electrons. Molecular compounds that contain one or more unpaired electrons are paramagnetic. The magnitude of the paramagnetism is expressed as an effective magnetic moment, μeff. For first-row transition metals the magnitude of μeff is, to a first approximation, a simple function of the number of unpaired electrons, the spin-only formula. In general, spin–orbit coupling causes μeff to deviate from the spin-only formula. For the heavier transition metals, lanthanides and actinides, spin–orbit coupling cannot be ignored. Exchange interaction can occur in clusters and infinite lattices, resulting in ferromagnetism, antiferromagnetism or ferrimagnetism depending on the relative orientations of the individual spins.

<span class="mw-page-title-main">Iron tris(dimethyldithiocarbamate)</span> Chemical compound

Iron tris(dimethyldithiocarbamate) is the coordination complex of iron with dimethyldithiocarbamate with the formula Fe(S2CNMe2)3 (Me = methyl). It is marketed as a fungicide.

Thermally activated delayed fluorescence (TADF) is a process through which surrounding thermal energy changes population of excited states of molecular compounds and thus, alters light emission. The TADF process usually involves an excited molecular species in a triplet state, which commonly has a forbidden transition to the singlet ground state, termed phosphorescence. By absorbing nearby thermal energy, the triplet state can undergo reverse intersystem crossing (RISC) converting the triplet state population to an excited singlet state, which then emits light to the singlet ground state in a delayed process termed delayed fluorescence. Accordingly, in many cases, the TADF molecules show two types of emission, a delayed fluorescence and a prompt fluorescence. This is found for specific organic molecules, but also for selected organo-transition metal compounds, such as Cu(I) complexes. Along with traditional fluorescent molecules and phosphorescent molecules, TADF compounds belong to the three main light-emitting material groups used in organic light-emitting diodes (OLEDs).

Azzedine Bousseksou is a Franco-Algerian physical chemist known for his contributions to molecular materials and spintronics.

<span class="mw-page-title-main">Mixed-valence complex</span> Type of chemical compound

Mixed valence complexes contain an element which is present in more than one oxidation state. Well-known mixed valence compounds include the Creutz–Taube complex, Prussian blue, and molybdenum blue. Many solids are mixed-valency including indium chalcogenides.

<span class="mw-page-title-main">Iron tris(diethyldithiocarbamate)</span> Chemical compound

Iron tris(diethyldithiocarbamate) is the coordination complex of iron with diethyldithiocarbamate with the formula Fe(S2CNEt2)3 (Et = ethyl). It is a black solid that is soluble in organic solvents.

References

  1. 1 2 Phillip Gūtlich, Light Induced Electronic Spin State Trapping (LIESST) Archived 2007-05-17 at the Wayback Machine
  2. Phillip Gūtlich, Andreas Hauser, and Harmut Spiering, Thermal and Optical Switching of Iron(II) Complexes, Angew. Chem. Int. Ed. Engl. 1994.33, 2024-2054, DOI:10.1002/anie.199420241
  3. Cambi, L.; Cagnasso, A. Atti. Accad. Naz. Lincei, CI. Sci. Fis., Mat. Nut., Rend. 1931, 13, 809. Cambi, L.: Szego, L. Ber. Drsch. Chem. Ges. B 1931, 64, 259.