Ladder polymer

Last updated
(Si4O11 )n chain in the mineral tremolite, which is an inorganic ladder polymer. Tremolite-chain.png
(Si4O11 )n chain in the mineral tremolite, which is an inorganic ladder polymer.

In chemistry, a ladder polymer is a type of double stranded polymer with the connectivity of a ladder. In a typical one-dimensional polymer, e.g. polyethylene and polysiloxanes, the monomers form two bonds, giving a chain. In a ladder polymer the monomers are interconnected by four bonds. Inorganic ladder polymers are found in synthetic and natural settings. Ladder polymers are a special case of cross-linked polymers because the crosslinks exist only with pairs of chains. [1]

Contents

According to one definition, a ladder polymer, adjacent rings have two or more atoms in common. [2]

Organic ladder polymers

Organic ladder polymers are of interest because they can exhibit exceptional thermal stabilities and the conformation of the subunits is constrained. Because they are less flexible, their processing can be challenging. An early example was derived from condensation of the 1,2,4,5-tetraaminobenzene with naphthalenetetracarboxylic dianhydride. [3] [4]

Poly(benzimidazobenzophenanthroline) (BBL) is a conjugated ladder polymer. [5] Its backbone is composed of aromatic rings and the ladder structures enable the uninterrupted polymer chains with periodic linkages. However, conjugated ladder polymers additionally contain pi conjugation via strong pi-pi stacking interactions and charge transport. [6] Traditionally, p-typed doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is used as conductive polymers, but BBL doped with poly(ethyleneimine) (PEI) can provide a n-type doped conductive properties for fabricating high-performance organic electronic devices. [7] BBL's glass transition temperature (Tg) is estimated to be around 500 C based on differential scanning calorimetry (DSC) measurements. [8] [9] BBL is stable at higher temperatures. In addition to this, the stress-strain curves of BBL fibers were observed to be very high compared to other semiconductor fibers with a value around 105.8 MPa with the highest BBL polymer concentration. [10]

Inorganic and organometallic ladder polymers

Some polysilicates are ladder polymers. One example is provided by the mineral tremolite.

In the area of coordination chemistry, the ladder structure is seen in some coordination polymers. Illustrative is the polymer [CuI(2-picoline]n. When the 2-picoline is replaced by a tertiary phosphine, it forms a tetrameric cubane-type cluster, [CuI([[PR3]]4 (R = organic group_. In both cases, the Cu(I) centers adopt tetrahedral molecular geometry. [11] [12]

Ladder vs cubane motifs for compounds of the formula [CuL(I)]n. CuXLstructures.png
Ladder vs cubane motifs for compounds of the formula [CuL(I)]n.

Related Research Articles

Molecular electronics is the study and application of molecular building blocks for the fabrication of electronic components. It is an interdisciplinary area that spans physics, chemistry, and materials science. The unifying feature is use of molecular building blocks to fabricate electronic components. Due to the prospect of size reduction in electronics offered by molecular-level control of properties, molecular electronics has generated much excitement. It provides a potential means to extend Moore's Law beyond the foreseen limits of small-scale conventional silicon integrated circuits.

<span class="mw-page-title-main">Conductive polymer</span> Organic polymers that conduct electricity

Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The main advantage of conductive polymers is that they are easy to process, mainly by dispersion. Conductive polymers are generally not thermoplastics, i.e., they are not thermoformable. But, like insulating polymers, they are organic materials. They can offer high electrical conductivity but do not show similar mechanical properties to other commercially available polymers. The electrical properties can be fine-tuned using the methods of organic synthesis and by advanced dispersion techniques.

Poly(<i>p</i>-phenylene vinylene) Chemical compound

Poly(p-phenylene vinylene) (PPV, or polyphenylene vinylene) is a conducting polymer of the rigid-rod polymer family. PPV is the only polymer of this type that can be processed into a highly ordered crystalline thin film. PPV and its derivatives are electrically conducting upon doping. Although insoluble in water, its precursors can be manipulated in aqueous solution. The small optical band gap and its bright yellow fluorescence makes PPV a candidate in applications such as light-emitting diodes (LED) and photovoltaic devices. Moreover, PPV can be doped to form electrically conductive materials. Its physical and electronic properties can be altered by the inclusion of functional side groups.

<span class="mw-page-title-main">Polyacetylene</span> Organic polymer made of the repeating unit [C2H2]

Polyacetylene usually refers to an organic polymer with the repeating unit [C2H2]n. The name refers to its conceptual construction from polymerization of acetylene to give a chain with repeating olefin groups. This compound is conceptually important, as the discovery of polyacetylene and its high conductivity upon doping helped to launch the field of organic conductive polymers. The high electrical conductivity discovered by Hideki Shirakawa, Alan Heeger, and Alan MacDiarmid for this polymer led to intense interest in the use of organic compounds in microelectronics. This discovery was recognized by the Nobel Prize in Chemistry in 2000. Early work in the field of polyacetylene research was aimed at using doped polymers as easily processable and lightweight "plastic metals". Despite the promise of this polymer in the field of conductive polymers, many of its properties such as instability to air and difficulty with processing have led to avoidance in commercial applications.

<span class="mw-page-title-main">Polythiophene</span>

Polythiophenes (PTs) are polymerized thiophenes, a sulfur heterocycle. The parent PT is an insoluble colored solid with the formula (C4H2S)n. The rings are linked through the 2- and 5-positions. Poly(alkylthiophene)s have alkyl substituents at the 3- or 4-position(s). They are also colored solids, but tend to be soluble in organic solvents.

<span class="mw-page-title-main">Polyaniline</span> Conducting semi-flexible rod polymer

Polyaniline (PANI) is a conducting polymer and organic semiconductor of the semi-flexible rod polymer family. The compound has been of interest since the 1980s because of its electrical conductivity and mechanical properties. Polyaniline is one of the most studied conducting polymers.

Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are either injected from appropriate electrodes, upon doping or by photoexcitation.

<span class="mw-page-title-main">Chain-growth polymerization</span> Polymerization technique

Chain-growth polymerization (AE) or chain-growth polymerisation (BE) is a polymerization technique where monomer molecules add onto the active site on a growing polymer chain one at a time. There are a limited number of these active sites at any moment during the polymerization which gives this method its key characteristics.

<span class="mw-page-title-main">PEDOT:PSS</span> Polymer

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is a polymer mixture of two ionomers. One component in this mixture is made up of polystyrene sulfonate which is a sulfonated polystyrene. Part of the sulfonyl groups are deprotonated and carry a negative charge. The other component poly(3,4-ethylenedioxythiophene) (PEDOT) is a conjugated polymer and carries positive charges and is based on polythiophene. Together the charged macromolecules form a macromolecular salt.

<span class="mw-page-title-main">Atom transfer radical polymerization</span>

Atom transfer radical polymerization (ATRP) is an example of a reversible-deactivation radical polymerization. Like its counterpart, ATRA, or atom transfer radical addition, ATRP is a means of forming a carbon-carbon bond with a transition metal catalyst. Polymerization from this method is called atom transfer radical addition polymerization (ATRAP). As the name implies, the atom transfer step is crucial in the reaction responsible for uniform polymer chain growth. ATRP was independently discovered by Mitsuo Sawamoto and by Krzysztof Matyjaszewski and Jin-Shan Wang in 1995.

<span class="mw-page-title-main">Coordination polymer</span> Polymer consisting of repeating units of a coordination complex

A coordination polymer is an inorganic or organometallic polymer structure containing metal cation centers linked by ligands. More formally a coordination polymer is a coordination compound with repeating coordination entities extending in 1, 2, or 3 dimensions.

A polymer-based battery uses organic materials instead of bulk metals to form a battery. Currently accepted metal-based batteries pose many challenges due to limited resources, negative environmental impact, and the approaching limit of progress. Redox active polymers are attractive options for electrodes in batteries due to their synthetic availability, high-capacity, flexibility, light weight, low cost, and low toxicity. Recent studies have explored how to increase efficiency and reduce challenges to push polymeric active materials further towards practicality in batteries. Many types of polymers are being explored, including conductive, non-conductive, and radical polymers. Batteries with a combination of electrodes are easier to test and compare to current metal-based batteries, however batteries with both a polymer cathode and anode are also a current research focus. Polymer-based batteries, including metal/polymer electrode combinations, should be distinguished from metal-polymer batteries, such as a lithium polymer battery, which most often involve a polymeric electrolyte, as opposed to polymeric active materials.

<span class="mw-page-title-main">Transparent conducting film</span> Optically transparent and electrically conductive material

Transparent conducting films (TCFs) are thin films of optically transparent and electrically conductive material. They are an important component in a number of electronic devices including liquid-crystal displays, OLEDs, touchscreens and photovoltaics. While indium tin oxide (ITO) is the most widely used, alternatives include wider-spectrum transparent conductive oxides (TCOs), conductive polymers, metal grids and random metallic networks, carbon nanotubes (CNT), graphene, nanowire meshes and ultra thin metal films.

<span class="mw-page-title-main">Polyfluorene</span> Chemical compound

Polyfluorene is a polymer with formula (C13H8)n, consisting of fluorene units linked in a linear chain — specifically, at carbon atoms 2 and 7 in the standard fluorene numbering. It can also be described as a chain of benzene rings linked in para positions with an extra methylene bridge connecting every pair of rings.

<span class="mw-page-title-main">Conjugated microporous polymer</span>

Conjugated microporous polymers (CMPs) are a sub-class of porous materials that are related to structures such as zeolites, metal-organic frameworks, and covalent organic frameworks, but are amorphous in nature, rather than crystalline. CMPs are also a sub-class of conjugated polymers and possess many of the same properties such as conductivity, mechanical rigidity, and insolubility. CMPs are created through the linking of building blocks in a π-conjugated fashion and possess 3-D networks. Conjugation extends through the system of CMPs and lends conductive properties to CMPs. Building blocks of CMPs are attractive in that the blocks possess broad diversity in the π units that can be used and allow for tuning and optimization of the skeleton and subsequently the properties of CMPs. Most building blocks have rigid components such as alkynes that cause the microporosity. CMPs have applications in gas storage, heterogeneous catalysis, light emitting, light harvesting, and electric energy storage.

IUPAC Polymer Nomenclature are standardized naming conventions for polymers set by the International Union of Pure and Applied Chemistry (IUPAC) and described in their publication "Compendium of Polymer Terminology and Nomenclature", which is also known as the "Purple Book". Both the IUPAC and Chemical Abstracts Service (CAS) make similar naming recommendations for the naming of polymers.

<span class="mw-page-title-main">PIDA (polymer)</span> Chemical compound

PIDA, or poly(diiododiacetylene), is an organic polymer that has a polydiacetylene backbone. It is one of the simplest polydiacetylenes that has been synthesized, having only iodine atoms as side chains. It is created by 1,4 topochemical polymerization of diiodobutadiyne. It has many implications in the field of polymer chemistry as it can be viewed as a precursor to other polydiacetylenes by replacing iodine atoms with other side chains using organic synthesis, or as an iodinated form of the carbon allotrope carbyne.

Eilaf Egap is an adjunct assistant professor of Materials Science at Rice University. She works on imaging techniques and biomaterials for early diagnostics and drug delivery. She was a Massachusetts Institute of Technology MLK Visiting Scholar in 2011.

<span class="mw-page-title-main">Conductive metal−organic frameworks</span>

Conductive metal−organic frameworks are a class of metal–organic frameworks with intrinsic ability of electronic conduction. Metal ions and organic linker self-assemble to form a framework which can be 1D/2D/3D in connectivity. The first conductive MOF, Cu[Cu(2,3-pyrazinedithiol)2] was described in 2009 and exhibited electrical conductivity of 6 × 10−4 S cm−1 at 300 K.

A polymer electrolyte is a polymer matrix capable of ion conduction. Much like other types of electrolyte—liquid and solid-state—polymer electrolytes aid in movement of charge between the anode and cathode of a cell. The use of polymers as an electrolyte was first demonstrated using dye-sensitized solar cells. The field has expanded since and is now primarily focused on the development of polymer electrolytes with applications in batteries, fuel cells, and membranes.

References

  1. "ladder macromolecule".
  2. Metanomski, W. V.; Bareiss, R. E.; Kahovec, J.; Loening, K. L.; Shi, L.; Shibaev, V. P. (1993). "Nomenclature of Regular Double-Strand (Ladder and Spiro) Organic Polymers" Pure Appl. Chem.65 (7): 1561–1580.
  3. Scherf, Ullrich "Ladder-type materials" Journal of Materials Chemistry 1999, volume 9, 1853-1864. {{DOI: 10.1039/A900447E}}
  4. Grimsdale, Andrew C.; Muellen, Klaus "Phenylene-based ladder polymers" in Design and Synthesis of Conjugated Polymers, Edited by Leclerc, Mario; Morin, Jean-Francois 2010. Pp. 227-245.
  5. Mamand, Dyari Mustafa; Qadr, Hiwa Mohammed (2021). "Comprehensive Spectroscopic and Optoelectronic Properties of BBL Organic Semiconductor". Protection of Metals and Physical Chemistry of Surfaces. 57 (5): 943–953. doi:10.1134/S207020512105018X. ISSN   2070-206X.
  6. Lee, Jongbok; Kalin, Alexander J.; Yuan, Tianyu; Al-Hashimi, Mohammed; Fang, Lei (28 March 2017). "Fully conjugated ladder polymers". Chemical Science. 8 (4): 2503–2521. doi:10.1039/C7SC00154A. hdl: 1969.1/183772 .
  7. Yang, Chi-Yuan; Stoeckel, Marc-Antoine; Ruoko, Tero-Petri; Wu, Han-Yan; Liu, Xianjie; Kolhe, Nagesh B.; Wu, Ziang; Puttisong, Yuttapoom; Musumeci, Chiara; Massetti, Matteo; Sun, Hengda; Xu, Kai; Tu, Deyu; Chen, Weimin M.; Woo, Han Young; Fahlman, Mats; Jenekhe, Samson A.; Berggren, Magnus; Fabiano, Simone (21 April 2021). "A high-conductivity n-type polymeric ink for printed electronics". Nature Communications. 12 (1): 2354. doi:10.1038/s41467-021-22528-y. PMC   8060302 .
  8. Jenekhe, Samson A.; Roberts, Michael F. (August 1993). "Effects of intermolecular forces on the glass transition of polymers". Macromolecules. 26 (18): 4981–4983. doi:10.1021/ma00070a041. ISSN   0024-9297.
  9. Zimmerman, Catherine M.; Koros, William J. (September 1999). "Comparison of gas transport and sorption in the ladder polymer BBL and some semi-ladder polymers". Polymer. 40 (20): 5655–5664. doi:10.1016/S0032-3861(98)00777-0.
  10. Wang, Xiu; Zhang, Zhi; Li, Peiyun; Xu, Jingcao; Zheng, Yuting; Sun, Wenxi; Xie, Mingyue; Wang, Juanrong; Pan, Xiran; Lei, Xun; Wang, Jingyi; Chen, Jupeng; Chen, Yiheng; Wang, Shu‐Jen; Lei, Ting (8 March 2024). "Ultrastable N‐Type Semiconducting Fiber Organic Electrochemical Transistors for Highly Sensitive Biosensors". Advanced Materials. doi:10.1002/adma.202400287.
  11. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  12. Leong, Wei Lee; Vittal, Jagadese J. (2011). "One-Dimensional Coordination Polymers: Complexity and Diversity in Structures, Properties, and Applications". Chemical Reviews. 111 (2): 688–764. doi:10.1021/cr100160e. PMID   20804195.