LamaH (Large-Sample Data for Hydrology and Environmental Sciences) is a cross-state initiative for unified data preparation and collection in the field of catchment hydrology. Hydrological datasets, for example, are an integral component for creating flood forecasting models.
LamaH datasets always consist of a combination of meteorological time series (e.g., precipitation, temperature) and hydrologically relevant catchment attributes (e.g., elevation, slope, forest area, soil, bedrock) aggregated over the respective catchment as well as associated hydrological time series at the catchment outlet (discharge). By evaluating the large and heterogeneous sample (large-sample) of catchments, it is possible to gain insights into the hydrological cycle that would probably not be achievable with local and small-scale studies. The structure of the dataset allows an evaluation based on machine learning methods (deep learning). The accompanying paper explains not only the data preparation but also any limitations, uncertainties and possible applications. [1]
The LamaH datasets are quite similar to the CAMELS datasets, but additionally feature: [1]
LamaH datasets are available for the following regions:
CAMELS datasets are available for (ranked by publication date):
Both the CAMELS and LamaH datasets are licensed with Creative Commons and are therefore available barrier-free for the public.
Hydrology is the scientific study of the movement, distribution, and management of water on Earth and other planets, including the water cycle, water resources, and drainage basin sustainability. A practitioner of hydrology is called a hydrologist. Hydrologists are scientists studying earth or environmental science, civil or environmental engineering, and physical geography. Using various analytical methods and scientific techniques, they collect and analyze data to help solve water related problems such as environmental preservation, natural disasters, and water management.
Evapotranspiration (ET) refers to the combined processes which move water from the Earth's surface into the atmosphere. It covers both water evaporation and transpiration. Evapotranspiration is an important part of the local water cycle and climate, and measurement of it plays a key role in agricultural irrigation and water resource management.
A drainage basin is an area of land where all flowing surface water converges to a single point, such as a river mouth, or flows into another body of water, such as a lake or ocean. A basin is separated from adjacent basins by a perimeter, the drainage divide, made up of a succession of elevated features, such as ridges and hills. A basin may consist of smaller basins that merge at river confluences, forming a hierarchical pattern.
The HBV hydrology model, or Hydrologiska Byråns Vattenbalansavdelning model, is a computer simulation used to analyze river discharge and water pollution. Developed originally for use in Scandinavia, this hydrological transport model has also been applied in a large number of catchments on most continents.
Generalized likelihood uncertainty estimation (GLUE) is a statistical method used in hydrology for quantifying the uncertainty of model predictions. The method was introduced by Keith Beven and Andrew Binley in 1992. The basic idea of GLUE is that given our inability to represent exactly in a mathematical model how nature works, there will always be several different models that mimic equally well an observed natural process. Such equally acceptable or behavioral models are therefore called equifinal.
The Global Carbon Project (GCP) is an organisation that seeks to quantify global greenhouse gas emissions and their causes. Established in 2001, its projects include global budgets for three dominant greenhouse gases—carbon dioxide, methane, and nitrous oxide —and complementary efforts in urban, regional, cumulative, and negative emissions.
A hydrologic model is a simplification of a real-world system that aids in understanding, predicting, and managing water resources. Both the flow and quality of water are commonly studied using hydrologic models.
Atmospheric methane is the methane present in Earth's atmosphere. The concentration of atmospheric methane is increasing due to methane emissions, and is causing climate change. Methane is one of the most potent greenhouse gases. Methane's radiative forcing (RF) of climate is direct, and it is the second largest contributor to human-caused climate forcing in the historical period. Methane is a major source of water vapour in the stratosphere through oxidation; and water vapour adds about 15% to methane's radiative forcing effect. The global warming potential (GWP) for methane is about 84 in terms of its impact over a 20-year timeframe, and 28 in terms of its impact over a 100-year timeframe.
The global freshwater model WaterGAP calculates flows and storages of water on all continents of the globe, taking into account the human influence on the natural freshwater system by water abstractions and dams. It supports understanding the freshwater situation across the world's river basins during the 20th and the 21st centuries, and is applied to assess water scarcity, droughts and floods and to quantify the impact of human actions on e.g. groundwater, wetlands, streamflow and sea-level rise. Modelling results of WaterGAP have contributed to international assessment of the global environmental situation including the UN World Water Development Reports, the Millennium Ecosystem Assessment, the UN Global Environmental Outlooks as well as to reports of the Intergovernmental Panel on Climate Change. WaterGAP contributes to the Intersectoral Impact Model Intercomparison Project ISIMIP, where consistent ensembles of model runs by a number of global hydrological models are generated to assess the impact of climate change and other anthropogenic stressors on freshwater resources world-wide.
Socio-hydrology; socio and hydrology is an interdisciplinary field studying the dynamic interactions and feedbacks between water and people. Areas of research in socio-hydrology include the historical study of the interplay between hydrological and social processes, comparative analysis of the co-evolution and self-organization of human and water systems in different cultures, and process-based modelling of coupled human-water systems. The first approach to socio-hydrology was the term "hydro-sociology", which arises from a concern about the scale of impact of human activities on the hydrological cycle. Socio-hydrology is defined as the humans-water interaction and later as “the science of people and water”, which introduces bidirectional feedbacks between human–water systems, differentiating it from other related disciplines that deal with water. Furthermore, socio-hydrology has been presented as one of the most relevant challenges for the Anthropocene, in relationship with its aims at unraveling dynamic cross-scale interactions and feedbacks between natural and human processes that give rise to many water sustainability challenges. Socio‐hydrology is also predicted to be an important license for modellers.
PERSIANN, "Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks", is a satellite-based precipitation retrieval algorithm that provides near real-time rainfall information. The algorithm uses infrared (IR) satellite data from global geosynchronous satellites as the primary source of precipitation information. Precipitation from IR images is based on statistical relationship between cloud top temperature and precipitation rates. The IR-based precipitation estimates are then calibrated using satellite microwave data available from low Earth orbit satellites. The calibration technique relies on an adaptive training algorithm that updates the retrieval parameters when microwave observations become available.
The topographic wetness index (TWI), also known as the compound topographic index (CTI), is a steady state wetness index. It is commonly used to quantify topographic control on hydrological processes. The index is a function of both the slope and the upstream contributing area per unit width orthogonal to the flow direction. The index was designed for hillslope catenas. Accumulation numbers in flat areas will be very large, so TWI will not be a relevant variable. The index is highly correlated with several soil attributes such as horizon depth, silt percentage, organic matter content, and phosphorus. Methods of computing this index differ primarily in the way the upslope contributing area is calculated.
Shimenolepis granifera is an extinct yunnanolepid placoderm from the Xiaoxi Formation, Li County, Hunan, China. Its age is discussed, while originally considered as late Llandovery, it is later considered to belong to the Ludlow Epoch instead. It was the first described Silurian placoderm, and was the earliest known placoderm until Xiushanosteus was described, known from distinctively ordered plates.
Giuliano Di Baldassarre is a professor of hydrology at Uppsala University and the Director of the Centre of Natural Hazards and Disaster Science, Sweden. He was awarded the American Geophysical Union Whiterspoon Lecture in 2020 and the European Geosciences Union Plinius Medal in 2021.
Helene Hewitt is a British climate scientist who is a research fellow at the Met Office. Her research considers climate and ocean models. Hewitt serves on the CLIVAR Ocean Model Development Panel. She was awarded an Order of the British Empire in the 2022 Birthday Honours.
Paweł Mariusz Rowiński (born 26 February 1965) is a Polish hydrogeologist, hydrodynamicist, geophysicist, full professor at the Institute of Geophysics, Polish Academy of Sciences, a full member of the Polish Academy of Sciences, vice-president of the Polish Academy of Sciences.
The Standardized Precipitation Evapotranspiration Index (SPEI) is a multiscalar drought index based on climatic data. It was developed by Vicente-Serrano et al. (2010) at the Institute Pirenaico de Ecologia in Zaragoza, Spain. It can be used for determining the onset, duration and magnitude of drought conditions with respect to normal conditions in a variety of natural and managed systems such as crops, ecosystems, rivers, water resources, etc.
Martha Carol Anderson is research scientist with the United States Department of Agriculture. She is known for her work in using satellite imagery to track droughts and their impact on crops. In 2022, she was elected a fellow of the American Geophysical Union. In 2024, she was elected a fellow of the National Academy of Engineering.
Watershed delineation is the process of identifying the boundary of a watershed, also referred to as a catchment, drainage basin, or river basin. It is an important step in many areas of environmental science, engineering, and management, for example to study flooding, aquatic habitat, or water pollution.