Lamonte trevallis

Last updated

Lamonte trevallis
Trace fossil classification OOjs UI icon edit-ltr.svg
Ichnogenus: Lamonte
Ichnospecies
  • Lamonte trevallisMeyer, Xiao, Gill, Schiffbauer, Chen, Zhou et Yuan, 2014

Lamonte trevallis is an ichnospecies from the late Ediacaran sediments of the Yangtze Gorges of Southern China. [1] It represented fairly large traces that indicate burrowing behaviour. [2] [3] It had Millimetre-sized traces preserved differently than other Ichnofossils from that time period. [1] Surface-dwelling trackways, vertical burrows and horizontal tunnels are a common characteristic of the trace fossil.

See also

Related Research Articles

<span class="mw-page-title-main">Cambrian</span> First period of the Paleozoic Era, 539–485 million years ago

The Cambrian Period is the first geological period of the Paleozoic Era, and of the Phanerozoic Eon. The Cambrian lasted 53.4 million years from the end of the preceding Ediacaran Period 538.8 million years ago (mya) to the beginning of the Ordovician Period 485.4 mya. Its subdivisions, and its base, are somewhat in flux.

<span class="mw-page-title-main">Ediacaran</span> Third and last period of the Neoproterozoic Era

The Ediacaran Period is a geological period of the Neoproterozoic Era that spans 96 million years from the end of the Cryogenian Period at 635 Mya, to the beginning of the Cambrian Period at 538.8 Mya. It is the last period of the Proterozoic Eon as well as the so-called Precambrian "supereon", before the beginning of the subsequent Cambrian Period marks the start of the Phanerozoic Eon, where recognizable fossil evidence of life becomes common.

<span class="mw-page-title-main">Neoproterozoic</span> Third and last era of the Proterozoic Eon

The Neoproterozoic Era is the unit of geologic time from 1 billion to 538.8 million years ago.

The cloudinids, an early metazoan family containing the genera Acuticocloudina, Cloudina and Conotubus, lived in the late Ediacaran period about 550 million years ago. and became extinct at the base of the Cambrian. They formed millimetre-scale conical fossils consisting of calcareous cones nested within one another; the appearance of the organism itself remains unknown. The name Cloudina honors the 20th-century geologist and paleontologist Preston Cloud.

<span class="mw-page-title-main">Pteridinium</span>

Pteridinium is an erniettomorph found in a number of Precambrian deposits worldwide. It is a member of the Ediacaran biota.

<i>Dickinsonia</i> Extinct genus of early animals

Dickinsonia is a genus of extinct organism that lived during the late Ediacaran period in what is now Australia, China, Russia and Ukraine, most likely a basal animal. It is one of the best known members of the Ediacaran biota. The individual Dickinsonia typically resembles a bilaterally symmetrical ribbed oval. Its affinities are presently unknown; its mode of growth has been considered consistent with a stem-group bilaterian affinity, though various other affinities have been proposed. The discovery of cholesterol molecules in fossils of Dickinsonia lends support to the idea that Dickinsonia was an animal, though these results have been questioned.

<span class="mw-page-title-main">Doushantuo Formation</span>

The Doushantuo Formation is a geological formation in western Hubei, eastern Guizhou, southern Shaanxi, central Jiangxi, and other localities in China. It is known for the fossil Lagerstätten in Zigui in Hubei, Xiuning in Anhui, and Weng'an in Guizhou, as one of the oldest beds to contain minutely preserved microfossils, phosphatic fossils that are so characteristic they have given their name to "Doushantuo type preservation". The formation, whose deposits date back to the Early and Middle Ediacaran, is of particular interest because it covers the poorly understood interval of time between the end of the Cryogenian geological period and the more familiar fauna of the Late Ediacaran Avalon explosion, as well as due to its microfossils' potential utility as biostratigraphical markers. Taken as a whole, the Doushantuo Formation ranges from about 635 Ma at its base to about 551 Ma at its top, with the most fossiliferous layer predating by perhaps five Ma the earliest of the 'classical' Ediacaran faunas from Mistaken Point on the Avalon Peninsula of Newfoundland, and recording conditions up to a good forty to fifty million years before the Cambrian explosion at the beginning of the Phanerozoic.

<i>Kimberella</i> Primitive Mollusc-like organism

Kimberella is an extinct genus of bilaterian known only from rocks of the Ediacaran period. The slug-like organism fed by scratching the microbial surface on which it dwelt in a manner similar to the gastropods, although its affinity with this group is contentious.

<span class="mw-page-title-main">Rangea</span> Fossil taxon

Rangea is a frond-like Ediacaran fossil with six-fold radial symmetry. It is the type genus of the rangeomorphs.

<span class="mw-page-title-main">Ediacaran biota</span> All organisms of the Ediacaran Period (c. 635–538.8 million years ago)

The Ediacaranbiota is a taxonomic period classification that consists of all life forms that were present on Earth during the Ediacaran Period. These were enigmatic tubular and frond-shaped, mostly sessile, organisms. Trace fossils of these organisms have been found worldwide, and represent the earliest known complex multicellular organisms. The term "Ediacara biota" has received criticism from some scientists due to its alleged inconsistency, arbitrary exclusion of certain fossils, and inability to be precisely defined.

<span class="mw-page-title-main">Cambrian substrate revolution</span> Diversification of animal burrowing

The "Cambrian substrate revolution" or "Agronomic revolution", evidenced in trace fossils, is a sudden diversification of animal burrowing during the early Cambrian period.

Oldhamia is an ichnogenus describing burrows produced by worm-like organisms mining underneath microbial mats. It was common from the Early Cambrian deep-water deposits.

The end-Ediacaran extinction is a mass extinction believed to have occurred near the end of the Ediacaran period, the final period of the Proterozoic eon. Evidence suggesting that such a mass extinction occurred includes a massive reduction in diversity of acritarchs, the sudden disappearance of the Ediacara biota and calcifying organisms, and the time gap before Cambrian organisms "replaced" them. Some lines of evidence suggests that there may have been two distinct pulses of the extinction event, one occurring 550 million years ago and the other 539 million years ago.

The Cambrian explosion, Cambrian radiation,Cambrian diversification, or the Biological Big Bang refers to an interval of time approximately 538.8 million years ago in the Cambrian Period of early Paleozoic when there was a sudden radiation of complex life and practically all major animal phyla started appearing in the fossil record. It lasted for about 13 – 25 million years and resulted in the divergence of most modern metazoan phyla. The event was accompanied by major diversification in other groups of organisms as well.

<i>Arumberia</i> Trace fossil

Arumberia is an enigmatic fossil from the Ediacaran period originally described from the Arumbera Sandstone, Northern Territory, Australia but also found in the Urals, East Siberia, England and Wales, Northern France, the Avalon Peninsula and India. Several morphologically distinct species are recognized.

<span class="mw-page-title-main">Dengying Formation</span>

The Dengying Formation is an upper Ediacaran fossiliferous geologic formation found in South China. It was deposited on a shallow marine carbonate platform.

Orbisiana is an Ediacaran benthic organism formed out of series of agglutinated spherical or hemispherical chambers. It is believed to be a close relative of Palaeopascichnus.

Bilinichnus simplex is a trace fossil from the Ediacaran period which consists of two parallel ridges on sandstone bed sole which have been interpreted as trails of peristaltic locomotion of a unknown gastropod-like animal leaving these traces behind or as pseudofossil of some kind.

Shuhai Xiao is a Chinese-American paleontologist and professor of geobiology at Virginia Tech, Blacksburg, Virginia, U.S.A.

References

  1. 1 2 Meyer, Mike; Polys, Nick; Yaqoob, Humza; Hinnov, Linda; Xiao, Shuhai (2017). "Beyond the stony veil: Reconstructing the Earth's earliest large animal traces via computed tomography X-ray imaging". Precambrian Research. 298: 341–350. Bibcode:2017PreR..298..341M. doi:10.1016/j.precamres.2017.05.010. hdl: 10919/81948 .
  2. Meyer, M.; Xiao, S.; Gill, B. C.; Schiffbauer, J. D.; Chen, Z.; Zhou, C.; Yuan, X. (2014). "Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China". Palaeogeography, Palaeoclimatology, Palaeoecology. 396: 62–74. doi:10.1016/j.palaeo.2013.12.026.
  3. O'Neil, G. O.; Tackett, L. S.; Meyer, M. (2020). "Petrographic evidence for Ediacaran microbial mat-targeted behaviors from the Great Basin, United States". Precambrian Research. 345: 105768. doi:10.1016/j.precamres.2020.105768. S2CID   218916532.