Lax equivalence theorem

Last updated

In numerical analysis, the Lax equivalence theorem is a fundamental theorem in the analysis of finite difference methods for the numerical solution of partial differential equations. It states that for a consistent finite difference method for a well-posed linear initial value problem, the method is convergent if and only if it is stable. [1]

The importance of the theorem is that while the convergence of the solution of the finite difference method to the solution of the partial differential equation is what is desired, it is ordinarily difficult to establish because the numerical method is defined by a recurrence relation while the differential equation involves a differentiable function. However, consistency—the requirement that the finite difference method approximates the correct partial differential equation—is straightforward to verify, and stability is typically much easier to show than convergence (and would be needed in any event to show that round-off error will not destroy the computation). Hence convergence is usually shown via the Lax equivalence theorem.

Stability in this context means that a matrix norm of the matrix used in the iteration is at most unity, called (practical) Lax–Richtmyer stability. [2] Often a von Neumann stability analysis is substituted for convenience, although von Neumann stability only implies Lax–Richtmyer stability in certain cases.

This theorem is due to Peter Lax. It is sometimes called the Lax–Richtmyer theorem, after Peter Lax and Robert D. Richtmyer. [3]

Related Research Articles

Numerical analysis Field of mathematics

Numerical analysis is the study of algorithms that use numerical approximation for the problems of mathematical analysis. Numerical analysis naturally finds application in all fields of engineering and the physical sciences, but in the 21st century also the life sciences, social sciences, medicine, business and even the arts have adopted elements of scientific computations. The growth in computing power has revolutionized the use of realistic mathematical models in science and engineering, and subtle numerical analysis is required to implement these detailed models of the world. For example, ordinary differential equations appear in celestial mechanics ; numerical linear algebra is important for data analysis; stochastic differential equations and Markov chains are essential in simulating living cells for medicine and biology.

Partial differential equation differential equation that contains unknown multivariable functions and their partial derivatives

In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function.

In the mathematical subfield of numerical analysis, numerical stability is a generally desirable property of numerical algorithms. The precise definition of stability depends on the context. One is numerical linear algebra and the other is algorithms for solving ordinary and partial differential equations by discrete approximation.

Numerical methods for ordinary differential equations methods used to find numerical solutions of ordinary differential equations

Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term is sometimes taken to mean the computation of integrals.

Peter Lax Hungarian-born American mathematician

Peter David Lax is a Hungarian-born American mathematician working in the areas of pure and applied mathematics.

Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs).

Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment.

Stability theory Part of mathematics that addresses the stability of solutions

In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation, for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature at a later time as a result of the maximum principle. In partial differential equations one may measure the distances between functions using Lp norms or the sup norm, while in differential geometry one may measure the distance between spaces using the Gromov–Hausdorff distance.

Finite difference method numerical methods for solving differential equations by approximating them with difference equations

In numerical analysis, finite-difference methods (FDM) are a class of numerical techniques for solving differential equations by approximating derivatives with finite differences. Both the spatial domain and time interval are discretized, or broken into a finite number of steps, and the value of the solution at these discrete points is approximated by solving algebraic equations containing finite differences and values from nearby points.

Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible.

Finite element method Numerical method for solving physical or engineering problems

The finite element method (FEM) is the most widely used method for solving problems of engineering and mathematical models. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a particular numerical method for solving partial differential equations in two or three space variables. To solve a problem, the FEM subdivides a large system into smaller, simpler parts that are called finite elements. This is achieved by a particular space discretization in the space dimensions, which is implemented by the construction of a mesh of the object: the numerical domain for the solution, which has a finite number of points. The finite element method formulation of a boundary value problem finally results in a system of algebraic equations. The method approximates the unknown function over the domain. The simple equations that model these finite elements are then assembled into a larger system of equations that models the entire problem. The FEM then uses variational methods from the calculus of variations to approximate a solution by minimizing an associated error function.

The Lax–Friedrichs method, named after Peter Lax and Kurt O. Friedrichs, is a numerical method for the solution of hyperbolic partial differential equations based on finite differences. The method can be described as the FTCS scheme with a numerical dissipation term of 1/2. One can view the Lax–Friedrichs method as an alternative to Godunov's scheme, where one avoids solving a Riemann problem at each cell interface, at the expense of adding artificial viscosity.

In numerical analysis, the FTCS method is a finite difference method used for numerically solving the heat equation and similar parabolic partial differential equations. It is a first-order method in time, explicit in time, and is conditionally stable when applied to the heat equation. When used as a method for advection equations, or more generally hyperbolic partial differential equation, it is unstable unless artificial viscosity is included. The abbreviation FTCS was first used by Patrick Roache.

In numerical analysis, von Neumann stability analysis is a procedure used to check the stability of finite difference schemes as applied to linear partial differential equations. The analysis is based on the Fourier decomposition of numerical error and was developed at Los Alamos National Laboratory after having been briefly described in a 1947 article by British researchers Crank and Nicolson. This method is an example of explicit time integration where the function that defines governing equation is evaluated at the current time. Later, the method was given a more rigorous treatment in an article co-authored by John von Neumann.

Robert Davis Richtmyer was an American physicist, mathematician, educator, author, and musician.

Burton Wendroff is an American applied mathematician known for his contributions to the development of numerical methods for the solution of hyperbolic partial differential equations. The Lax–Wendroff method for the solution of hyperbolic PDE is named for Wendroff.

The following is a timeline of scientific computing, also known as computational science.

The following is a timeline of numerical analysis after 1945, and deals with developments after the invention of the modern electronic computer, which began during Second World War. For a fuller history of the subject before this period, see timeline and history of mathematics.

References

  1. Strikwerda, John C. (1989). Finite Difference Schemes and Partial Differential Equations (1st ed.). Chapman & Hall. pp. 26, 222. ISBN   0-534-09984-X.
  2. Smith, G. D. (1985). Numerical Solution of Partial Differential Equations: Finite Difference Methods (3rd ed.). Oxford University Press. pp.  67–68. ISBN   0-19-859641-3.
  3. Lax, P. D.; Richtmyer, R. D. (1956). "Survey of the Stability of Linear Finite Difference Equations". Comm. Pure Appl. Math. 9: 267–293. doi:10.1002/cpa.3160090206. MR   0079204.