Layer by layer

Last updated

Layer-by-layer (LbL) deposition is a thin film fabrication technique. The films are formed by depositing alternating layers of oppositely charged materials with wash steps in between. This can be accomplished by using various techniques such as immersion, spin, spray, electromagnetism, or fluidics. [1]

Contents

Development

The first implementation of this technique is attributed to J. J. Kirkland and R. K. Iler of DuPont, who carried it out using microparticles in 1966. [2] The method was later revitalized by the discovery of its applicability to a wide range of polyelectrolytes by Gero Decher at Johannes Gutenberg-Universität Mainz. [3]

Implementation

A simple representation can be made by defining two oppositely charged polyions as + and -, and defining the wash step as W. To make an LbL film with 5 bilayers one would deposit W+W-W+W-W+W-W+W-W+W-W, which would lead to a film with 5 bilayers, specifically + - + - + - + - + - .

The representation of the LbL technique as a multilayer build-up based solely on electrostatic attraction is a simplification. Other interactions are involved in this process, including hydrophobic attraction. [4] Multilayer build-up is enabled by multiple attractive forces acting cooperatively, typical for high-molecular weight building blocks, while electrostatic repulsion provides self-limitation of the absorption of individual layers. This range of interactions makes it possible to extend the LbL technique to hydrogen-bonded films, [5] nanoparticles, [6] similarly charged polymers, hydrophobic solvents, [7] and other unusual systems. [8]

The bilayers and wash steps can be performed in many different ways including dip coating, spin-coating, spray-coating, flow based techniques and electro-magnetic techniques. [1] The preparation method distinctly impacts the properties of the resultant films, allowing various applications to be realized. [1] For example, a whole car has been coated with spray assembly, optically transparent films have been prepared with spin assembly, etc. [1] Characterization of LbL film deposition is typically done by optical techniques such as dual polarisation interferometry or ellipsometry or mechanical techniques such as quartz crystal microbalance.[ citation needed ]

LbL offers several advantages over other thin film deposition methods. LbL is simple and can be inexpensive. There are a wide variety of materials that can be deposited by LbL including polyions, metals, ceramics, nanoparticles, and biological molecules. Another important quality of LbL is the high degree of control over thickness, which arises due to the variable growth profile of the films, which directly correlates to the materials used, the number of bilayers, and the assembly technique. [1] By the fact that each bilayer can be as thin as 1 nm, this method offers easy control over the thickness with 1 nm resolution.

Applications

LbL has found applications [1] in protein purification, [9] corrosion control, (photo)electrocatalysis, [10] biomedical applications, [11] ultrastrong materials, [12] and many more. [13] LbL composites from graphene oxide harbingered the appearance of numerous graphene and graphene oxide composites later on. [14] The first use of reduced graphene oxide composites for lithium batteries was also demonstrated with LbL multilayers. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Chemical vapor deposition</span> Method used to apply surface coatings

Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.

<span class="mw-page-title-main">Graphene</span> Hexagonal lattice made of carbon atoms

Graphene is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds.

<span class="mw-page-title-main">Polyelectrolyte</span> Polymers whose repeating units bear an electrolyte group

Polyelectrolytes are polymers whose repeating units bear an electrolyte group. Polycations and polyanions are polyelectrolytes. These groups dissociate in aqueous solutions (water), making the polymers charged. Polyelectrolyte properties are thus similar to both electrolytes (salts) and polymers and are sometimes called polysalts. Like salts, their solutions are electrically conductive. Like polymers, their solutions are often viscous. Charged molecular chains, commonly present in soft matter systems, play a fundamental role in determining structure, stability and the interactions of various molecular assemblies. Theoretical approaches to describing their statistical properties differ profoundly from those of their electrically neutral counterparts, while technological and industrial fields exploit their unique properties. Many biological molecules are polyelectrolytes. For instance, polypeptides, glycosaminoglycans, and DNA are polyelectrolytes. Both natural and synthetic polyelectrolytes are used in a variety of industries.

<span class="mw-page-title-main">Langmuir–Blodgett film</span> Thin film obtained by depositing multiple monolayers onto a surface

A Langmuir–Blodgett (LB) film is a nanostructured system formed when Langmuir films—or Langmuir monolayers (LM)—are transferred from the liquid-gas interface to solid supports during the vertical passage of the support through the monolayers. LB films can contain one or more monolayers of an organic material, deposited from the surface of a liquid onto a solid by immersing the solid substrate into the liquid. A monolayer is adsorbed homogeneously with each immersion or emersion step, thus films with very accurate thickness can be formed. This thickness is accurate because the thickness of each monolayer is known and can therefore be added to find the total thickness of a Langmuir–Blodgett film.

<span class="mw-page-title-main">Nanocomposite</span> Solid material with nano-scale structure

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.

<span class="mw-page-title-main">Graphite oxide</span> Compound of carbon, oxygen, and hydrogen

Graphite oxide (GO), formerly called graphitic oxide or graphitic acid, is a compound of carbon, oxygen, and hydrogen in variable ratios, obtained by treating graphite with strong oxidizers and acids for resolving of extra metals. The maximally oxidized bulk product is a yellow solid with C:O ratio between 2.1 and 2.9, that retains the layer structure of graphite but with a much larger and irregular spacing.

<span class="mw-page-title-main">Rodney S. Ruoff</span> American chemist

Rodney S. "Rod" Ruoff is an American physical chemist and nanoscience researcher. He is one of the world experts on carbon materials including carbon nanostructures such as fullerenes, nanotubes, graphene, diamond, and has had pioneering discoveries on such materials and others. Ruoff received his B.S. in chemistry from the University of Texas at Austin (1981) and his Ph.D. in chemical physics at the University of Illinois-Urbana (1988). After a Fulbright Fellowship at the MPI fuer Stroemungsforschung in Goettingen, Germany (1989) and postdoctoral work at the IBM T. J. Watson Research Center (1990–91), Ruoff became a staff scientist in the Molecular Physics Laboratory at SRI International (1991–1996). He is currently UNIST Distinguished Professor at the Ulsan National Institute of Science and Technology (UNIST), and the director of the Center for Multidimensional Carbon Materials, an Institute for Basic Science Center located at UNIST.

Adsorption of polyelectrolytes on solid substrates is a surface phenomenon where long-chained polymer molecules with charged groups bind to a surface that is charged in the opposite polarity. On the molecular level, the polymers do not actually bond to the surface, but tend to "stick" to the surface via intermolecular forces and the charges created by the dissociation of various side groups of the polymer. Because the polymer molecules are so long, they have a large amount of surface area with which to contact the surface and thus do not desorb as small molecules are likely to do. This means that adsorbed layers of polyelectrolytes form a very durable coating. Due to this important characteristic of polyelectrolyte layers they are used extensively in industry as flocculants, for solubilization, as supersorbers, antistatic agents, as oil recovery aids, as gelling aids in nutrition, additives in concrete, or for blood compatibility enhancement to name a few.

Bilayer graphene is a material consisting of two layers of graphene. One of the first reports of bilayer graphene was in the seminal 2004 Science paper by Geim and colleagues, in which they described devices "which contained just one, two, or three atomic layers"

A nanosheet is a two-dimensional nanostructure with thickness in a scale ranging from 1 to 100 nm.

<span class="mw-page-title-main">Nicholas A. Kotov</span>

Nicholas A. Kotov is the Irving Langmuir Distinguished Professor of Chemical Sciences and Engineering at the University of Michigan in Ann Arbor, MI, USA. Prof. Nicholas Kotov demonstrated that the ability to self-organize into complex structures is the unifying property of all inorganic nanostructures. He has developed a family of bioinspired composite materials with a wide spectrum of properties that were previously unattainable in classical materials. These composite biomimetic materials are exemplified by his nacre-like ultrastrong yet transparent composites, enamel-like, stiff yet vibration-isolating composites, and cartilage-like membranes with both high strength and ion conductance.

Potential graphene applications include lightweight, thin, and flexible electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials.

<span class="mw-page-title-main">Chemiresistor</span>

A chemiresistor is a material that changes its electrical resistance in response to changes in the nearby chemical environment. Chemiresistors are a class of chemical sensors that rely on the direct chemical interaction between the sensing material and the analyte. The sensing material and the analyte can interact by covalent bonding, hydrogen bonding, or molecular recognition. Several different materials have chemiresistor properties: metal-oxide semiconductors, some conductive polymers, and nanomaterials like graphene, carbon nanotubes and nanoparticles. Typically these materials are used as partially selective sensors in devices like electronic tongues or electronic noses.

A rapidly increasing list of graphene production techniques have been developed to enable graphene's use in commercial applications.

Multi-parametric surface plasmon resonance (MP-SPR) is based on surface plasmon resonance (SPR), an established real-time label-free method for biomolecular interaction analysis, but it uses a different optical setup, a goniometric SPR configuration. While MP-SPR provides same kinetic information as SPR, it provides also structural information. Hence, MP-SPR measures both surface interactions and nanolayer properties.

<span class="mw-page-title-main">Boron nitride nanosheet</span>

Boron nitride nanosheet is a two-dimensional crystalline form of the hexagonal boron nitride (h-BN), which has a thickness of one to few atomic layers. It is similar in geometry as well as physical and thermal properties to its all-carbon analog graphene, but has very different chemical and electronic properties – contrary to the black and highly conducting graphene, BN nanosheets are electrical insulators with a band gap of ~5.9 eV, and therefore appear white in color.

<span class="mw-page-title-main">Nanoparticle deposition</span> Process of attaching nanoparticles to solid surfaces

Nanoparticle deposition refers to the process of attaching nanoparticles to solid surfaces called substrates to create coatings of nanoparticles. The coatings can have a monolayer or a multilayer and organized or unorganized structure based on the coating method used. Nanoparticles are typically difficult to deposit due to their physical properties.

<span class="mw-page-title-main">Gero Decher</span> German chemist (born 1956)

Gero Decher is a German chemist and Distinguished Professor at the Faculty of Chemistry of University of Strasbourg. He is best known for his seminal role in the development of polyelectrolyte multilayers, which is today known as “layer-by-layer (LbL) assembly”, a simple yet powerful nanofabrication method that has enabled the development of entirely new technologies, such as biocompatible coatings on medical devices, ultrastrong nanocomposites, neural interfaces, charge-storage devices, gas separation, fire retardants, and gene delivery platforms. According to CNRS International Magazine, Decher's work has “sparked a small revolution in materials science”. Layer-by-layer assembly is now an established part of the nanobiotechnology curriculum.

Two dimensional hexagonal boron nitride is a material of comparable structure to graphene with potential applications in e.g. photonics., fuel cells and as a substrate for two-dimensional heterostructures. 2D h-BN is isostructural to graphene, but where graphene is conductive, 2D h-BN is a wide-gap insulator.

Jaime C. Grunlan is a material scientist and academic. He is a Professor of Mechanical Engineering, and Leland T. Jordan ’29 Chair Professor at Texas A&M University.

References

  1. 1 2 3 4 5 6 J. J. Richardson; et al. (2015). "Technology-driven layer-by-layer assembly of nanofilms". Science. 348 (6233): 6233. doi: 10.1126/science.aaa2491 . hdl: 11343/90861 . PMID   25908826.
  2. J. J. Kirkland (1965). "Porous Thin-Layer Modified Glass Bead Supports for Gas Liquid Chromatography". Analytical Chemistry. 37 (12): 1458. doi:10.1021/ac60231a004.R. K. Iler (1966). "Multilayers of colloidal particles". Journal of Colloid and Interface Science. 21 (6): 569. doi:10.1016/0095-8522(66)90018-3.
  3. Gero Decher; Jong-Dal Hong (1991). "Buildup of ultrathin multilayer films by a self-assembly process, consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces". Macromolecular Symposia. 46: 321. doi:10.1002/masy.19910460145.
  4. Nicholas A. Kotov (1999). "Layer-by-layer self-assembly: The contribution of hydrophobic interactions". Nanostructured Materials. 12 (5–8): 789. doi:10.1016/S0965-9773(99)00237-8.
  5. André Laschewsky; Erik Wischerhoff; Steffen Denzinger; Helmut Ringsdorf; Arnaud Delcorte; Patrick Bertrand (1997). "Molecular Recognition by Hydrogen Bonding in Polyelectrolyte Multilayers". Chemistry: A European Journal. 3: 34. doi:10.1002/chem.19970030107.
  6. Nicholas A. Kotov; Imre Dekany; Janos H. Fendler (1995). "Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films". Journal of Physical Chemistry. 99 (35): 13065. doi:10.1021/j100035a005.
  7. Yuzuru Shimazaki; Masaya Mitsuishi; Shinzaburo Ito; Masahide Yamamoto (1997). "Preparation of the Layer-by-Layer Deposited Ultrathin Film Based on the Charge-Transfer Interaction". Langmuir. 13 (6): 1385. doi:10.1021/la9609579.
  8. Nejla Cini; Tülay Tulun; Gero Decher; Vincent Ball (2010). "Step-by-step assembly of self-patterning polyelectrolyte films violating (almost) all rules of layer-by-layer deposition". Journal of the American Chemical Society. 132 (24): 8264–5. doi:10.1021/ja102611q. PMID   20518535.
  9. Liu, Weijing (2016). "Layer-by-Layer Deposition with Polymers Containing Nitrilotriacetate, A Convenient Route to Fabricate Metal- and Protein-Binding Films". ACS Applied Materials & Interfaces. 8 (16): 10164–73. doi:10.1021/acsami.6b00896. PMID   27042860.
  10. Jeon, Dasom; Kim, Hyunwoo; Lee, Cheolmin; Han, Yujin; Gu, Minsu; Kim, Byeong-Su; Ryu, Jungki (22 November 2017). "Layer-by-Layer Assembly of Polyoxometalates for Photoelectrochemical (PEC) Water Splitting: Toward Modular PEC Devices". ACS Applied Materials & Interfaces. 9 (46): 40151–40161. doi:10.1021/acsami.7b09416.
  11. Hua Ai; Steven A. Jones; Yuri M. Lvov (2003). "Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles". Cell Biochemistry and Biophysics . 39 (1): 23–43. doi:10.1385/CBB:39:1:23. PMID   12835527.
  12. Zhiyong Tang; Nicholas A. Kotov; Sergei Magonov; Birol Ozturk (2003). "Nanostructured artificial nacre". Nature Materials. 2 (6): 413–8. doi:10.1038/nmat906. PMID   12764359.
  13. Decher, Gero (2012). Multilayer thin films - sequential assembly of nanocomposite materials, vol 2. Weinheim, Germany: Wiley-VCH.
  14. Kotov, Nicholas A.; Dékány, Imre; Fendler, Janos H. (1996-08-01). "Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states". Advanced Materials. 8 (8): 637–641. doi:10.1002/adma.19960080806. ISSN   1521-4095.
  15. Fendler, Janos H. (1999-01-01). "Colloid Chemical Approach to the Construction of High Energy Density Rechargeable Lithium - Ion Batteries". Journal of Dispersion Science and Technology. 20 (1–2): 13–25. doi:10.1080/01932699908943776. ISSN   0193-2691.