Legendre's conjecture, proposed by Adrien-Marie Legendre, states that there is a prime number between and for every positive integer . The conjecture is one of Landau's problems (1912) on prime numbers, and is one of many open problems on the spacing of prime numbers.
If Legendre's conjecture is true, the gap between any prime p and the next largest prime would be , as expressed in big O notation. [lower-alpha 1] It is one of a family of results and conjectures related to prime gaps, that is, to the spacing between prime numbers. Others include Bertrand's postulate, on the existence of a prime between and , Oppermann's conjecture on the existence of primes between , , and , Andrica's conjecture and Brocard's conjecture on the existence of primes between squares of consecutive primes, and Cramér's conjecture that the gaps are always much smaller, of the order . If Cramér's conjecture is true, Legendre's conjecture would follow for all sufficiently large n. Harald Cramér also proved that the Riemann hypothesis implies a weaker bound of on the size of the largest prime gaps. [1]
By the prime number theorem, the expected number of primes between and is approximately , and it is additionally known that for almost all intervals of this form the actual number of primes ( OEIS: A014085 ) is asymptotic to this expected number. [2] Since this number is large for large , this lends credence to Legendre's conjecture. [3] It is known that the prime number theorem gives an accurate count of the primes within short intervals, either unconditionally [4] or based on the Riemann hypothesis, [5] but the lengths of the intervals for which this has been proven are longer than the intervals between consecutive squares, too long to prove Legendre's conjecture.
It follows from a result by Ingham that for all sufficiently large , there is a prime between the consecutive cubes and . [6] [7] Dudek proved that this holds for all . [8]
Dudek also proved that for and any positive integer , there is a prime between and . Mattner lowered this to [9] which was further reduced to by Cully-Hugill. [10]
Baker, Harman, and Pintz proved that there is a prime in the interval for all large . [11]
A table of maximal prime gaps shows that the conjecture holds to at least , meaning . [12]
In number theory, a Carmichael number is a composite number which in modular arithmetic satisfies the congruence relation:
A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term twin prime is used for a pair of twin primes; an alternative name for this is prime twin or prime pair.
Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers.
In number theory, Bertrand's postulate is the theorem that for any integer , there exists at least one prime number with
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers and additive number theory.
In number theory, Cramér's conjecture, formulated by the Swedish mathematician Harald Cramér in 1936, is an estimate for the size of gaps between consecutive prime numbers: intuitively, that gaps between consecutive primes are always small, and the conjecture quantifies asymptotically just how small they must be. It states that
Legendre's constant is a mathematical constant occurring in a formula constructed by Adrien-Marie Legendre to approximate the behavior of the prime-counting function . The value that corresponds precisely to its asymptotic behavior is now known to be 1.
A powerful number is a positive integer m such that for every prime number p dividing m, p2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a2b3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full. Paul Erdős and George Szekeres studied such numbers and Solomon W. Golomb named such numbers powerful.
In mathematics, the Lindelöf hypothesis is a conjecture by Finnish mathematician Ernst Leonard Lindelöf about the rate of growth of the Riemann zeta function on the critical line. This hypothesis is implied by the Riemann hypothesis. It says that for any ε > 0, as t tends to infinity. Since ε can be replaced by a smaller value, the conjecture can be restated as follows: for any positive ε,
In number theory, Mills' constant is defined as the smallest positive real number A such that the floor function of the double exponential function
In number theory, the Elliott–Halberstam conjecture is a conjecture about the distribution of prime numbers in arithmetic progressions. It has many applications in sieve theory. It is named for Peter D. T. A. Elliott and Heini Halberstam, who stated a specific version of the conjecture in 1968.
A prime gap is the difference between two successive prime numbers. The n-th prime gap, denoted gn or g(pn) is the difference between the (n + 1)-st and the n-th prime numbers, i.e.
At the 1912 International Congress of Mathematicians, Edmund Landau listed four basic problems about prime numbers. These problems were characterised in his speech as "unattackable at the present state of mathematics" and are now known as Landau's problems. They are as follows:
In number theory, Grimm's conjecture states that to each element of a set of consecutive composite numbers one can assign a distinct prime that divides it. It was first published in American Mathematical Monthly, 76(1969) 1126-1128.
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann, after whom it is named.
In number theory, Maier's theorem is a theorem about the numbers of primes in short intervals for which Cramér's probabilistic model of primes gives a wrong answer.
János Pintz is a Hungarian mathematician working in analytic number theory. He is a fellow of the Rényi Mathematical Institute and is also a member of the Hungarian Academy of Sciences. In 2014, he received the Cole Prize of the American Mathematical Society.
Oppermann's conjecture is an unsolved problem in mathematics on the distribution of prime numbers. It is closely related to but stronger than Legendre's conjecture, Andrica's conjecture, and Brocard's conjecture. It is named after Danish mathematician Ludvig Oppermann, who announced it in an unpublished lecture in March 1877.
In number theory, Firoozbakht's conjecture is a conjecture about the distribution of prime numbers. It is named after the Iranian mathematician Farideh Firoozbakht who stated it first in 1982.