Legendre form

Last updated

In mathematics, the Legendre forms of elliptic integrals are a canonical set of three elliptic integrals to which all others may be reduced. Legendre chose the name elliptic integrals because [1] the second kind gives the arc length of an ellipse of unit semi-major axis and eccentricity (the ellipse being defined parametrically by , ).

Contents

In modern times the Legendre forms have largely been supplanted by an alternative canonical set, the Carlson symmetric forms. A more detailed treatment of the Legendre forms is given in the main article on elliptic integrals.

Definition

The incomplete elliptic integral of the first kind is defined as,

the second kind as

and the third kind as

The argument n of the third kind of integral is known as the characteristic, which in different notational conventions can appear as either the first, second or third argument of Π and furthermore is sometimes defined with the opposite sign. The argument order shown above is that of Gradshteyn and Ryzhik [2] as well as Numerical Recipes. [3] The choice of sign is that of Abramowitz and Stegun [4] as well as Gradshteyn and Ryzhik, [2] but corresponds to the of Numerical Recipes. [3]

The respective complete elliptic integrals are obtained by setting the amplitude, , the upper limit of the integrals, to .

The Legendre form of an elliptic curve is given by

Numerical evaluation

The classic method of evaluation is by means of Landen's transformations . Descending Landen transformation decreases the modulus towards zero, while increasing the amplitude . Conversely, ascending transformation increases the modulus towards unity, while decreasing the amplitude. In either limit of approaching zero or one, the integral is readily evaluated.

Most modern authors recommend evaluation in terms of the Carlson symmetric forms, for which there exist efficient, robust and relatively simple algorithms. This approach has been adopted by Boost C++ Libraries, GNU Scientific Library and Numerical Recipes. [3]

Related Research Articles

<span class="mw-page-title-main">Arithmetic–geometric mean</span> Mathematical function of two positive real arguments

In mathematics, the arithmetic–geometric mean of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential, trigonometric functions, and other special functions, as well as some mathematical constants, in particular, computing π.

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , which represents the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of .

In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler. Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse.

The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π. However, it has some drawbacks and therefore all record-breaking calculations for many years have used other methods, almost always the Chudnovsky algorithm. For details, see Chronology of computation of π.

<span class="mw-page-title-main">Legendre polynomials</span> System of complete and orthogonal polynomials

In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a vast number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications.

Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.

<span class="mw-page-title-main">Gudermannian function</span> Mathematical function relating circular and hyperbolic functions

In mathematics, the Gudermannian function relates a hyperbolic angle measure to a circular angle measure called the gudermannian of and denoted . The Gudermannian function reveals a close relationship between the circular functions and hyperbolic functions. It was introduced in the 1760s by Johann Heinrich Lambert, and later named for Christoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830. The gudermannian is sometimes called the hyperbolic amplitude as a limiting case of the Jacobi elliptic amplitude when parameter

<span class="mw-page-title-main">Disk (mathematics)</span> Plane figure, bounded by circle

In geometry, a disk is the region in a plane bounded by a circle. A disk is said to be closed if it contains the circle that constitutes its boundary, and open if it does not.

In mathematics, the Carlson symmetric forms of elliptic integrals are a small canonical set of elliptic integrals to which all others may be reduced. They are a modern alternative to the Legendre forms. The Legendre forms may be expressed in terms of the Carlson forms and vice versa.

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum, as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for . The Jacobi elliptic functions are used more often in practical problems than the Weierstrass elliptic functions as they do not require notions of complex analysis to be defined and/or understood. They were introduced by Carl Gustav Jakob Jacobi. Carl Friedrich Gauss had already studied special Jacobi elliptic functions in 1797, the lemniscate elliptic functions in particular, but his work was published much later.

In mathematics, the Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given by

In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.

In mathematics, specifically the theory of elliptic functions, the nome is a special function that belongs to the non-elementary functions. This function is of great importance in the description of the elliptic functions, especially in the description of the modular identity of the Jacobi theta function, the Hermite elliptic transcendents and the Weber modular functions, that are used for solving equations of higher degrees.

<span class="mw-page-title-main">Lemniscate elliptic functions</span> Mathematical functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

<span class="mw-page-title-main">Toroidal coordinates</span>

Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.

Landen's transformation is a mapping of the parameters of an elliptic integral, useful for the efficient numerical evaluation of elliptic functions. It was originally due to John Landen and independently rediscovered by Carl Friedrich Gauss.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

In mathematics, the Jacobi zeta functionZ(u) is the logarithmic derivative of the Jacobi theta function Θ(u). It is also commonly denoted as

In physics and mathematics, the spacetime triangle diagram (STTD) technique, also known as the Smirnov method of incomplete separation of variables, is the direct space-time domain method for electromagnetic and scalar wave motion.

In mathematics, Zolotarev polynomials are polynomials used in approximation theory. They are sometimes used as an alternative to the Chebyshev polynomials where accuracy of approximation near the origin is of less importance. Zolotarev polynomials differ from the Chebyshev polynomials in that two of the coefficients are fixed in advance rather than allowed to take on any value. The Chebyshev polynomials of the first kind are a special case of Zolotarev polynomials. These polynomials were introduced by Russian mathematician Yegor Ivanovich Zolotarev in 1868.

References

  1. Gratton-Guinness, Ivor (1997). The Fontana History of the Mathematical Sciences. Fontana Press. p. 308. ISBN   0-00-686179-2.
  2. 1 2 Градштейн, И. С.; Рыжик, И. М. (1971). "8.1: Special Functions: Elliptic Integrals and Functions". In Геронимус, Ю. В.; Цейтлин, М. Ю́. (eds.). Tablitsy integralov, summ, rjadov i proizvedeniiТаблицы интегралов, сумм, рядов и произведений [Tables of Integrals, Sums, Series, and Products] (in Russian) (5 ed.). Moscow: Nauka. LCCN   78876185.
  3. 1 2 3 William H. Press; Saul A. Teukolsky; William T. Vetterling; Brian P. Flannery (1992). "Chap. 6.11 Special Functions: Elliptic Integrals and Jacobian Functions". Numerical Recipes in C (2 ed.). Cambridge University Press. pp.  261–271. ISBN   0-521-43108-5.
  4. Milne-Thomson, Louis Melville (1983) [June 1964]. "Chapter 17: Elliptic Integrals". In Abramowitz, Milton; Stegun, Irene Ann (eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. pp. 589, 589–628. ISBN   978-0-486-61272-0. LCCN   64-60036. MR   0167642. LCCN   65-12253.

See also