Lethal ovitrap

Last updated

The lethal ovitrap is filled with water and the velour paper landing strip and a pesticide-treated strip from the white packet are attached to the trap. The female mosquito lands on the velour strip to lay eggs and receives a lethal dose of pesticide. Ovitrap U.S. Army Public Health Command.jpg
The lethal ovitrap is filled with water and the velour paper landing strip and a pesticide-treated strip from the white packet are attached to the trap. The female mosquito lands on the velour strip to lay eggs and receives a lethal dose of pesticide.

A lethal ovitrap is a device which attracts gravid female container-breeding mosquitoes and kills them. The traps halt the insect's life cycle by killing adult insects and stopping reproduction. The original use of ovitraps was to monitor the spread and density of Aedes and other container-breeding mosquito populations by collecting eggs which could be counted, or hatched to identify the types of insects. Since its conception, researchers found that adding lethal substances to the ovitraps could control the populations of these targeted species. These traps are called lethal ovitraps. They primarily target Aedes aegypti and Aedes albopictus mosquitoes, which are the main vectors of dengue fever, Zika virus, west Nile virus, yellow fever, and chikungunya.

Contents

Lethal ovitraps can either contain substances that kills larvae that hatch from eggs laid in the traps (larvicidal ovitraps), or substances that kill the adult mosquito when she enters, along with any larva that may hatch (adulticidal ovitraps). While larvicidal ovitraps only reduce larval growth, they do not kill the adult mosquitoes that may carry diseases. Adulticidal ovitraps act to kill the viremic (disease-carrying) female mosquitoes and act to directly stop disease transmission.

Lethal ovitraps use tiny amounts of pesticides, usually 99.9% less chemicals than applied using traditional spraying or “fogging”. They provide isolated spaces where mosquitoes, not humans and other wildlife, will find these pesticides, instead of broadcasting them into the environment. Harsher pesticides with less mosquito resistance can be used in these traps because the spaces are so isolated. This allows for better mosquito control with less pesticide use.

How it works

These dark, water-filled containers mimic the breeding site of container-breeding mosquitoes including the Aedes species. They prefer to lay their eggs in small human-made containers that hold standing water including rain buckets, flower pots, old tires, gutters, the leaf axils of plants, and even discarded bottles, cans, and other trash. These mosquitoes may visit on average 12 or more sites per egg-laying cycle [1] in an act called "skip-oviposition". This ensures as many eggs as possible will survive if the breeding sites are damaged or dried up. Because these mosquitoes jump from breeding site to breeding site, the chances that they will find an ovitrap are extremely high, almost certain if enough ovitraps are placed around natural breeding sites.

Lethal ovitraps in the United States

In the 1990s, U.S. military research scientists Michael Perich of the Walter Reed Army Institute of Research and Brian Zeichner of the U.S. Army Center for Health Promotion and Preventive Medicine, now called the U.S. Army Public Health Center, developed the Lethal Mosquito Breeding Container. [2] The U.S. Army patented the Lethal Mosquito Breeding Container in 1999; the patent expired in 2017. [3] In 2008, the US Army licensed the technology to SpringStar Inc., a manufacturing company located in Washington. SpringStar® then registered the product under the brand name of Trap-N-Kill®, which is for sale in some states in the US. Another lethal ovitrap available in the United States is the BG-GAT from the company Biogents. This trap type was developed by mosquito scientists from the Federal University of Minas Gerais in Brasil and the James Cook University in Australia. [4] This trap type has recently been successfully used to reduce Asian tiger mosquito biting pressure in a neighborhood project in University Park, MD, which was supervised by scientists from Rutgers University. [5]

Use in disease prevention

Ovitraps target A. aegypti and A. albopictus mosquitoes which are carriers of dengue fever, yellow fever, zika virus, west Nile virus, and chikungunya. These mosquitoes are found throughout Southeast Asia, Australia, Africa, Southern Europe, South and Central America, and the South and Eastern parts of the United States.

Some countries use ovitraps to monitor the spread of the Aedes mosquitoes to determine to where these diseases could spread. Lethal ovitraps have been used in field studies to show their effectiveness in reducing mosquito populations below disease-transmission thresholds. When referencing lethal ovitraps, the World Health Organization states, “Studies have shown that population densities can be reduced with sufficiently large numbers of frequently serviced traps. Life expectancy of the vector may also potentially be shortened, thus reducing the number of vectors that become infective”. [6]

The Queensland Health Department effectively uses lethal ovitraps as a part of their dengue action response team protocol. They state, “Operational use of this strategy to combat dengue outbreaks in Cairns and the Torres Strait suggests that large scale, or annihilation, ovitrapping is effective (e.g. Lethal ovitraps and yard inspections on Thursday Island, reduced dengue mosquito populations by 92%, and dengue transmission ceased)”. [7]

The Philippines also uses a larvicidal ovitrap in their dengue prevention programs. Although these traps only kill the larvae, they have shown significant impacts in dengue transmission levels. The Philippines Department of Science and Technology website describes one region with a 97% reduction in dengue cases (1,087 cases and 16 deaths in 2010, to 36 cases in 2011), and second region which saw a drop in dengue cases among school children from 210 in 2010 to zero in 2011. [8]

In 2001, Brazil tested ovitraps in field studies and found that test areas had reduced populations of Aedes compared to control areas. [9] Thailand ran a program that deployed mosquito control tools to communities, including lethal ovitraps for their yards and homes. The program was met with great success, “One year after the interventions, the dengue fever rates were zero in the community dengue control program versus 322 per 100,000 in an untreated reference community. The percentage of lethal ovitraps with eggs decreased from 66% to 10% in the integrated management program, indicating that the population of Ae. aegypti adult females was significantly reduced”. [10]

Other field studies have been performed in Peru, Bangladesh, Singapore, and other countries, but the technology is still not widely used for mosquito control. Pesticide spraying still remains the preferred mosquito population control method.

Related Research Articles

<span class="mw-page-title-main">Yellow fever</span> Viral disease common in tropical Africa and South America

Yellow fever is a viral disease of typically short duration. In most cases, symptoms include fever, chills, loss of appetite, nausea, muscle pains – particularly in the back – and headaches. Symptoms typically improve within five days. In about 15% of people, within a day of improving the fever comes back, abdominal pain occurs, and liver damage begins causing yellow skin. If this occurs, the risk of bleeding and kidney problems is increased.

<span class="mw-page-title-main">Mosquito</span> Family of flies

Mosquitoes are approximately 3,600 species of small flies comprising the family Culicidae. The word "mosquito" is Spanish for "little fly". Mosquitoes have a slender segmented body, one pair of wings, one pair of halteres, three pairs of long hair-like legs, and elongated mouthparts.

<span class="mw-page-title-main">Dengue fever</span> Tropical disease caused by the dengue virus, transmitted by mosquito

Dengue fever is a mosquito-borne tropical disease caused by the dengue virus. Symptoms typically begin three to fourteen days after infection. These may include a high fever, headache, vomiting, muscle and joint pains, and a characteristic skin itching and skin rash. Recovery generally takes two to seven days. In a small proportion of cases, the disease develops into a more severe dengue hemorrhagic fever, resulting in bleeding, low levels of blood platelets and blood plasma leakage, or into dengue shock syndrome, where dangerously low blood pressure occurs.

<i>Aedes albopictus</i> Species of mosquito

Aedes albopictus, from the mosquito (Culicidae) family, also known as the (Asian) tiger mosquito or forest mosquito, is a mosquito native to the tropical and subtropical areas of Southeast Asia. In the past few centuries, however, this species has spread to many countries through the transport of goods and international travel. It is characterized by the white bands on its legs and body.

<i>Aedes</i> Genus of mosquitoes

Aedes or Pointy Mosquito is a genus of mosquitoes originally found in tropical and subtropical zones, but now found on all continents except Antarctica. Some species have been spread by human activity: Aedes albopictus, a particularly invasive species, was spread to the Americas, including the United States, in the 1980s, by the used-tire trade.

<span class="mw-page-title-main">Arbovirus</span> Common name for several species of virus

Arbovirus is an informal name for any virus that is transmitted by arthropod vectors. The term arbovirus is a portmanteau word. Tibovirus is sometimes used to more specifically describe viruses transmitted by ticks, a superorder within the arthropods. Arboviruses can affect both animals and plants. In humans, symptoms of arbovirus infection generally occur 3–15 days after exposure to the virus and last three or four days. The most common clinical features of infection are fever, headache, and malaise, but encephalitis and viral hemorrhagic fever may also occur.

<i>Wolbachia</i> Genus of bacteria in the Alphaproteobacteria class

Wolbachia is a genus of intracellular bacteria that infects mainly arthropod species, including a high proportion of insects, and also some nematodes. It is one of the most common parasitic microbes, and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex, and in some cases have evolved to be mutualistic rather than parasitic. Some host species cannot reproduce, or even survive, without Wolbachia colonisation. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70% of all insect species are estimated to be potential hosts.

<span class="mw-page-title-main">Vector control</span> Methods to limit or eradicate the mammals, birds, insects etc. which transmit disease pathogens

Vector control is any method to limit or eradicate the mammals, birds, insects or other arthropods which transmit disease pathogens. The most frequent type of vector control is mosquito control using a variety of strategies. Several of the "neglected tropical diseases" are spread by such vectors.

<i>Aedes aegypti</i> Species of mosquito

Aedes aegypti, the yellow fever mosquito, is a mosquito that can spread dengue fever, chikungunya, Zika fever, Mayaro and yellow fever viruses, and other disease agents. The mosquito can be recognized by black and white markings on its legs and a marking in the form of a lyre on the upper surface of its thorax. This mosquito originated in Africa, but is now found in tropical, subtropical and temperate regions throughout the world.

<span class="mw-page-title-main">Temefos</span> Chemical compound

Temefos or temephos is an organophosphate larvicide used to treat water infested with disease-carrying insects including mosquitoes, midges, and black fly larvae.

<span class="mw-page-title-main">Mosquito control</span> Efforts to reduce damage from mosquitoes

Mosquito control manages the population of mosquitoes to reduce their damage to human health, economies, and enjoyment. Mosquito control is a vital public-health practice throughout the world and especially in the tropics because mosquitoes spread many diseases, such as malaria and the Zika virus.

<span class="mw-page-title-main">Ovitrap</span> A traditional approach to control mosquito population

An ovitrap is a device which consists of a dark container containing water and a substrate where mosquitoes can lay their eggs. The eggs then fall through the mesh into the water, where the larvae hatch and develop into pupas. When the adult mosquitoes emerge, they are trapped beneath the mesh and are unable to escape from the ovitrap. Ovitraps mimic the preferred breeding site for container breeding mosquitoes, including Aedes albopictus and Aedes aegypti.

The 2006 dengue outbreak in Pakistan was at the time the worst on record. There were 1931 lab-confirmed cases, and 41 confirmed deaths, according to the World Health Organization Regional Office for the Eastern Mediterranean. Other sources report a death toll of 52.

<span class="mw-page-title-main">Medical entomology</span> Study of insect impacts on human health

The discipline of medical entomology, or public health entomology, and also veterinary entomology is focused upon insects and arthropods that impact human health. Veterinary entomology is included in this category, because many animal diseases can "jump species" and become a human health threat, for example, bovine encephalitis. Medical entomology also includes scientific research on the behavior, ecology, and epidemiology of arthropod disease vectors, and involves a tremendous outreach to the public, including local and state officials and other stake holders in the interest of public safety.

<span class="mw-page-title-main">Mosquito-borne disease</span> Diseases caused by bacteria, viruses or parasites transmitted by mosquitoes

Mosquito-borne diseases or mosquito-borne illnesses are diseases caused by bacteria, viruses or parasites transmitted by mosquitoes. Nearly 700 million people get a mosquito-borne illness each year resulting in over 725,000 deaths.

<span class="mw-page-title-main">2007 Yap Islands Zika virus outbreak</span> Disease outbreak in the Federated States of Micronesia

The 2007 Yap Islands Zika virus outbreak represented the first time Zika virus had been detected outside Africa and Asia. It occurred in the Yap Islands, an island chain in the Federated States of Micronesia. Zika virus (ZIKV) is a vector-borne flavivirus in the same family as yellow fever, dengue, West Nile and Japanese encephalitis viruses.

Oxitec is a UK-based, US-owned biotechnology company that develops genetically modified insects in order to improve public health and food security through insect control. The insects act as biological insecticides. Insects are controlled without the use of chemical insecticides. Instead, the insects are genetically engineered to be unable to produce offspring. The company claims that this technology is more effective than insecticides and more environmentally friendly.

Aedes africanus is a species of mosquito that is found on the continent of Africa with the exclusion of Madagascar. Aedes aegypti and Aedes africanus are the two main yellow fever vector species in Zambia. Aedes africanus is mainly found in tropical forests not near wetlands.

An ovillanta is a type of mosquito trap designed by researchers at Laurentian University in Ontario, Canada, and tested in cooperation with the Ministry of Health in Guatemala and with researchers in Mexico. The simple, low-cost trap allows efficient collection and disposal of mosquito eggs and larvae.

<i>Toxorhynchites splendens</i> Species of fly

Toxorhynchites (Toxorhynchites) splendens is a species of non-hematophagous mosquito belonging to the genus Toxorhynchites. It is widely used as a predator to control dengue mosquitoes.

References

  1. Reiter, Paul; Clark, Gary G.; Anderson, Robert A.; Amador, Manuel A. (1995). "Short Report: Dispersal of Aedes aegypti in an Urban Area after Blood Feeding as Demonstrated by Rubidium-Marked Eggs". The American Journal of Tropical Medicine and Hygiene . 52 (2): 177–179. doi:10.4269/ajtmh.1995.52.177. PMID   7872449.
  2. Gervasoni, Jane (May 30, 2014). "Army invention helps prevent mosquito-borne disease". www.army.mil. Retrieved July 7, 2018.
  3. USexpired 5983557,Michael J. Perich,"Lethal mosquito breeding container patent",published 1999-11-16,issued 1999-11-16, assigned to United States Army
  4. Eiras, A.E.; Buhagiar, T.S.; Ritchie, S.A. (2014). "Development of the Gravid Aedes Trap for the Capture of Adult Female Container–Exploiting Mosquitoes (Diptera: Culicidae)". Journal of Medical Entomology . 51 (1): 200–209. doi: 10.1603/ME13104 . PMID   24605470. S2CID   23859972.
  5. Johnson, B.J.; Brosch, D.; Christiansen, A.; Wells, E.; Wells, M.; Bhandoola, A.F.; Milne, A.; Garrison, S.; Fonseca, D.M. (2018). "Neighbors help neighbors control urban mosquitoes". Scientific Reports . 8 (1): 15797. Bibcode:2018NatSR...815797J. doi: 10.1038/s41598-018-34161-9 . PMC   6202375 . PMID   30361483.
  6. "Dengue Control: Research". World Health Organization . Archived from the original on October 23, 2010. Retrieved September 8, 2019.
  7. "Queensland Dengue Management Plan 2010-2015" (PDF). p. 43. Archived (PDF) from the original on August 29, 2013. Retrieved March 3, 2014.
  8. "DOST's OL Trap sites show decrease in dengue cases". www.stii.dost.gov.ph. November 9, 2015.
  9. Perich, M. J.; Kardec, A.; Braga, I. A.; Portal, I. F.; Burge, R.; Zeichner, B. C.; Brogdon, W. A.; Wirtz, R. A. (2003). "Field evaluation of a lethal ovitrap against dengue vectors in Brazil". Medical and Veterinary Entomology. 17 (2): 205–210. doi:10.1046/j.1365-2915.2003.00427.x. PMID   12823838. S2CID   7037079.
  10. Zeichner, Brian C.; Debboun, Mustapha (2011). "The lethal ovitrap: a response to the resurgence of dengue and chikungunya". U.S. Army Medical Department Journal: 4–11. PMID   21805450 . Retrieved June 6, 2016 via OCLC.