In graph theory, a branch of mathematics, the linear arboricity of an undirected graph is the smallest number of linear forests its edges can be partitioned into. Here, a linear forest is an acyclic graph with maximum degree two; that is, it is a disjoint union of path graphs. Linear arboricity is a variant of arboricity, the minimum number of forests into which the edges can be partitioned.
The linear arboricity of any graph of maximum degree is known to be at least and is conjectured to be at most . This conjecture would determine the linear arboricity exactly for graphs of odd degree, as in that case both expressions are equal. For graphs of even degree it would imply that the linear arboricity must be one of only two possible values, but determining the exact value among these two choices is NP-complete.
The linear arboricity of a graph with maximum degree is always at least , because each linear forest can use only two of the edges at a maximum-degree vertex. The linear arboricity conjecture of Akiyama, Exoo & Harary (1981) is that this lower bound is also tight: according to their conjecture, every graph has linear arboricity at most . [1] However, this remains unproven, with the best proven upper bound on the linear arboricity being somewhat larger, for some constant due to Ferber, Fox and Jain. [2]
In order for the linear arboricity of a graph to equal , must be even and each linear forest must have two edges incident to each vertex of degree . But at a vertex that is at the end of a path, the forest containing that path has only one incident edge, so the degree at that vertex cannot equal . Thus, a graph whose linear arboricity equals must have some vertices whose degree is less than maximum. In a regular graph, there are no such vertices, and the linear arboricity cannot equal . Therefore, for regular graphs, the linear arboricity conjecture implies that the linear arboricity is exactly .
Linear arboricity is a variation of arboricity, the minimum number of forests that the edges of a graph can be partitioned into. Researchers have also studied linear k-arboricity, a variant of linear arboricity in which each path in the linear forest can have at most k edges. [3]
Another related problem is Hamiltonian decomposition, the problem of decomposing a regular graph of even degree into exactly Hamiltonian cycles. A given graph has a Hamiltonian decomposition if and only if the subgraph formed by removing an arbitrary vertex from the graph has linear arboricity .
Unlike arboricity, which can be determined in polynomial time, linear arboricity is NP-hard. Even recognizing the graphs of linear arboricity two is NP-complete. [4] However, for cubic graphs and other graphs of maximum degree three, the linear arboricity is always two, [1] and a decomposition into two linear forests can be found in linear time using an algorithm based on depth-first search. [5]
In graph theory, an outerplanar graph is a graph that has a planar drawing for which all vertices belong to the outer face of the drawing.
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.
In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices.
In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.
In graph theory, a domatic partition of a graph is a partition of into disjoint sets , ,..., such that each Vi is a dominating set for G. The figure on the right shows a domatic partition of a graph; here the dominating set consists of the yellow vertices, consists of the green vertices, and consists of the blue vertices.
The arboricity of an undirected graph is the minimum number of forests into which its edges can be partitioned. Equivalently it is the minimum number of spanning forests needed to cover all the edges of the graph. The Nash-Williams theorem provides necessary and sufficient conditions for when a graph is k-arboric.
In graph theory, a book embedding is a generalization of planar embedding of a graph to embeddings in a book, a collection of half-planes all having the same line as their boundary. Usually, the vertices of the graph are required to lie on this boundary line, called the spine, and the edges are required to stay within a single half-plane. The book thickness of a graph is the smallest possible number of half-planes for any book embedding of the graph. Book thickness is also called pagenumber, stacknumber or fixed outerthickness. Book embeddings have also been used to define several other graph invariants including the pagewidth and book crossing number.
In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.
In graph theory, an area of mathematics, an equitable coloring is an assignment of colors to the vertices of an undirected graph, in such a way that
In the mathematical field of graph theory, the Chvátal graph is an undirected graph with 12 vertices and 24 edges, discovered by Václav Chvátal in 1970. It is the smallest graph that is triangle-free, 4-regular, and 4-chromatic.
In graph theory, a branch of mathematics, a Hamiltonian decomposition of a given graph is a partition of the edges of the graph into Hamiltonian cycles. Hamiltonian decompositions have been studied both for undirected graphs and for directed graphs. In the undirected case a Hamiltonian decomposition can also be described as a 2-factorization of the graph such that each factor is connected.
In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate. The degeneracy of a graph is a measure of how sparse it is, and is within a constant factor of other sparsity measures such as the arboricity of a graph.
In the mathematical study of graph theory, a pancyclic graph is a directed graph or undirected graph that contains cycles of all possible lengths from three up to the number of vertices in the graph. Pancyclic graphs are a generalization of Hamiltonian graphs, graphs which have a cycle of the maximum possible length.
Sumner's conjecture states that every orientation of every -vertex tree is a subgraph of every -vertex tournament. David Sumner, a graph theorist at the University of South Carolina, conjectured in 1971 that tournaments are universal graphs for polytrees. The conjecture was proven for all large by Daniela Kühn, Richard Mycroft, and Deryk Osthus.
In graph theory, a branch of mathematics, a linear forest is a kind of forest where each component is a path graph, or a disjoint union of nontrivial paths. Equivalently, it is an acyclic and claw-free graph. An acyclic graph where every vertex has degree 0, 1, or 2 is a linear forest. An undirected graph has Colin de Verdière graph invariant at most 1 if and only if it is a (node-)disjoint union of paths, i.e. it is linear. Any linear forest is a subgraph of the path graph with the same number of vertices.
The graph coloring game is a mathematical game related to graph theory. Coloring game problems arose as game-theoretic versions of well-known graph coloring problems. In a coloring game, two players use a given set of colors to construct a coloring of a graph, following specific rules depending on the game we consider. One player tries to successfully complete the coloring of the graph, when the other one tries to prevent him from achieving it.
In graph theory, the thickness of a graph G is the minimum number of planar graphs into which the edges of G can be partitioned. That is, if there exists a collection of k planar graphs, all having the same set of vertices, such that the union of these planar graphs is G, then the thickness of G is at most k. In other words, the thickness of a graph is the minimum number of planar subgraphs whose union equals to graph G.
In graph theory, the act of coloring generally implies the assignment of labels to vertices, edges or faces in a graph. The incidence coloring is a special graph labeling where each incidence of an edge with a vertex is assigned a color under certain constraints.
In graph theory, the Nash-Williams theorem is a tree-packing theorem that describes how many edge-disjoint spanning trees (and more generally forests) a graph can have:
A graph G has t edge-disjoint spanning trees iff for every partition where there are at least t(k − 1) crossing edges (Tutte 1961, Nash-Williams 1961).
In graph theory, the cutwidth of an undirected graph is the smallest integer with the following property: there is an ordering of the vertices of the graph, such that every cut obtained by partitioning the vertices into earlier and later subsets of the ordering is crossed by at most edges. That is, if the vertices are numbered , then for every , the number of edges with and is at most .