Linear arboricity

Last updated
Partition of the graph of a rhombic dodecahedron into two linear forests, showing that its linear arboricity is two Rhombic dodecahedron linear arboricity.svg
Partition of the graph of a rhombic dodecahedron into two linear forests, showing that its linear arboricity is two

In graph theory, a branch of mathematics, the linear arboricity of an undirected graph is the smallest number of linear forests its edges can be partitioned into. Here, a linear forest is an acyclic graph with maximum degree two; that is, it is a disjoint union of path graphs. Linear arboricity is a variant of arboricity, the minimum number of forests into which the edges can be partitioned.

Contents

The linear arboricity of any graph of maximum degree is known to be at least and is conjectured to be at most . This conjecture would determine the linear arboricity exactly for graphs of odd degree, as in that case both expressions are equal. For graphs of even degree it would imply that the linear arboricity must be one of only two possible values, but determining the exact value among these two choices is NP-complete.

Relation to degree

Unsolved problem in mathematics:

Does every graph of maximum degree have linear arboricity at most ?

The linear arboricity of a graph with maximum degree is always at least , because each linear forest can use only two of the edges at a maximum-degree vertex. The linear arboricity conjecture of Akiyama, Exoo & Harary (1981) is that this lower bound is also tight: according to their conjecture, every graph has linear arboricity at most . [1] However, this remains unproven, with the best proven upper bound on the linear arboricity being somewhat larger, for some constant due to Ferber, Fox and Jain. [2]

In order for the linear arboricity of a graph to equal , must be even and each linear forest must have two edges incident to each vertex of degree . But at a vertex that is at the end of a path, the forest containing that path has only one incident edge, so the degree at that vertex cannot equal . Thus, a graph whose linear arboricity equals must have some vertices whose degree is less than maximum. In a regular graph, there are no such vertices, and the linear arboricity cannot equal . Therefore, for regular graphs, the linear arboricity conjecture implies that the linear arboricity is exactly .

Linear arboricity is a variation of arboricity, the minimum number of forests that the edges of a graph can be partitioned into. Researchers have also studied linear k-arboricity, a variant of linear arboricity in which each path in the linear forest can have at most k edges. [3]

Another related problem is Hamiltonian decomposition, the problem of decomposing a regular graph of even degree into exactly Hamiltonian cycles. A given graph has a Hamiltonian decomposition if and only if the subgraph formed by removing an arbitrary vertex from the graph has linear arboricity .

Computational complexity

Unlike arboricity, which can be determined in polynomial time, linear arboricity is NP-hard. Even recognizing the graphs of linear arboricity two is NP-complete. [4] However, for cubic graphs and other graphs of maximum degree three, the linear arboricity is always two, [1] and a decomposition into two linear forests can be found in linear time using an algorithm based on depth-first search. [5]

Related Research Articles

Graph theory Area of discrete mathematics

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices which are connected by edges. A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.

Hamiltonian path Path in a graph that visits each vertex exactly once

In the mathematical field of graph theory, a Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle is a Hamiltonian path that is a cycle. Determining whether such paths and cycles exist in graphs is the Hamiltonian path problem, which is NP-complete.

Graph coloring Assignment of colors to elements of a graph subject to certain constraints.

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

Independent set (graph theory) Unrelated vertices in graphs

In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set of vertices such that for every two vertices in , there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in . A set is independent if and only if it is a clique in the graph’s complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening.

Edge coloring

In graph theory, an edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.

In graph theory, a domatic partition of a graph is a partition of into disjoint sets , ,..., such that each Vi is a dominating set for G. The figure on the right shows a domatic partition of a graph; here the dominating set consists of the yellow vertices, consists of the green vertices, and consists of the blue vertices.

The arboricity of an undirected graph is the minimum number of forests into which its edges can be partitioned. Equivalently it is the minimum number of spanning forests needed to cover all the edges of the graph. The Nash-Williams theorem provides necessary and sufficient conditions for when a graph is k-arboric.

Maximum cut

For a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between the set S and the set T is as large as possible. The problem of finding a maximum cut in a graph is known as the Max-Cut Problem.

In graph theory, an area of mathematics, an equitable coloring is an assignment of colors to the vertices of an undirected graph, in such a way that

Chvátal graph

In the mathematical field of graph theory, the Chvátal graph is an undirected graph with 12 vertices and 24 edges, discovered by Václav Chvátal (1970).

Hamiltonian decomposition

In graph theory, a branch of mathematics, a Hamiltonian decomposition of a given graph is a partition of the edges of the graph into Hamiltonian cycles. Hamiltonian decompositions have been studied both for undirected graphs and for directed graphs. In the undirected case a Hamiltonian decomposition can also be described as a 2-factorization of the graph such that each factor is connected.

Caterpillar tree

In graph theory, a caterpillar or caterpillar tree is a tree in which all the vertices are within distance 1 of a central path.

In graph theory, the graph bandwidth problem is to label the n vertices vi of a graph G with distinct integers f(vi) so that the quantity is minimized . The problem may be visualized as placing the vertices of a graph at distinct integer points along the x-axis so that the length of the longest edge is minimized. Such placement is called linear graph arrangement, linear graph layout or linear graph placement.

Degeneracy (graph theory)

In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate. The degeneracy of a graph is a measure of how sparse it is, and is within a constant factor of other sparsity measures such as the arboricity of a graph.

Sumners conjecture

Sumner's conjecture states that every orientation of every -vertex tree is a subgraph of every -vertex tournament. David Sumner, a graph theorist at the University of South Carolina, conjectured in 1971 that tournaments are universal graphs for polytrees. The conjecture was proven for all large by Daniela Kühn, Richard Mycroft, and Deryk Osthus.

In graph theory, a branch of mathematics, a linear forest is a kind of forest formed from the disjoint union of path graphs. It is an undirected graph with no cycles in which every vertex has degree at most two. Linear forests are the same thing as claw-free forests. They are the graphs whose Colin de Verdière graph invariant is at most 1.

The graph coloring game is a mathematical game related to graph theory. Coloring game problems arose as game-theoretic versions of well-known graph coloring problems. In a coloring game, two players use a given set of colors to construct a coloring of a graph, following specific rules depending on the game we consider. One player tries to successfully complete the coloring of the graph, when the other one tries to prevent him from achieving it.

In graph theory, the thickness of a graph G is the minimum number of planar graphs into which the edges of G can be partitioned. That is, if there exists a collection of k planar graphs, all having the same set of vertices, such that the union of these planar graphs is G, then the thickness of G is at most k. In other words, the thickness of a graph is the minimum number of planar subgraphs whose union equals to graph G.

In graph theory, the act of coloring generally implies the assignment of labels to vertices, edges or faces in a graph. The incidence coloring is a special graph labeling where each incidence of an edge with a vertex is assigned a color under certain constraints.

Ruzsa–Szemerédi problem

In combinatorial mathematics and extremal graph theory, the Ruzsa–Szemerédi problem or (6,3)-problem asks for the maximum number of edges in a graph in which every edge belongs to a unique triangle. Equivalently it asks for the maximum number of edges in a balanced bipartite graph whose edges can be partitioned into a linear number of induced matchings, or the maximum number of triples one can choose from points so that every six points contain at most two triples. The problem is named after Imre Z. Ruzsa and Endre Szemerédi, who first proved that its answer is smaller than by a slowly-growing factor.

References

  1. 1 2 Akiyama, Jin; Exoo, Geoffrey; Harary, Frank (1981), "Covering and packing in graphs. IV. Linear arboricity", Networks, 11 (1): 69–72, doi:10.1002/net.3230110108, MR   0608921 .
  2. Ferber, Asaf; Fox, Jacob; Jain, Vishesh (2018), Towards the linear arboricity conjecture, arXiv: 1809.04716 .
  3. Alon, Noga; Teague, V. J.; Wormald, N. C. (2001), "Linear arboricity and linear k-arboricity of regular graphs", Graphs and Combinatorics, 17 (1): 11–16, doi:10.1007/PL00007233, MR   1828624 .
  4. Péroche, B. (1984), "NP-completeness of some problems of partitioning and covering in graphs", Discrete Applied Mathematics, 8 (2): 195–208, doi: 10.1016/0166-218X(84)90101-X , MR   0743024 ; see also Péroche, B. (1982), "Complexité de l'arboricité linéaire d'un graphe", RAIRO Recherche Opérationnelle, 16 (2): 125–129, doi: 10.1051/ro/1982160201251 , MR   0679633 and Péroche, B. (1985), "Complexité de l'arboricité linéaire d'un graphe. II", RAIRO Recherche Opérationnelle, 19 (3): 293–300, doi: 10.1051/ro/1985190302931 , MR   0815871 . A reduction of Péroche (1982) from multigraphs to simple graphs is repeated in Shermer, Thomas C. (1996), "On rectangle visibility graphs. III. External visibility and complexity" (PDF), Proceedings of the 8th Canadian Conference on Computational Geometry (CCCG'96), pp. 234–239.
  5. Duncan, Christian A.; Eppstein, David; Kobourov, Stephen G. (2004), "The geometric thickness of low degree graphs", Proc. 20th ACM Symposium on Computational Geometry (SoCG 2004), pp. 340–346, arXiv: cs.CG/0312056 , doi:10.1145/997817.997868 .