Linkage isomerism

Last updated

In chemistry, linkage isomerism or ambidentate isomerism is a form of isomerism in which certain coordination compounds have the same composition but differ in their metal atom's connectivity to a ligand.

Typical ligands that give rise to linkage isomers are:

Examples of linkage isomers are violet-colored [(NH3)5Co-SCN]2+ and orange-colored [(NH3)5Co-NCS]2+. The isomerization of the S-bonded isomer to the N-bonded isomer occurs intramolecularly. [1]

The complex cis-dichlorotetrakis(dimethylsulfoxide)ruthenium(II) (RuCl2(dmso)4) exhibits linkage isomerism of dimethyl sulfoxide ligands due to S- vs. O-bonding. Trans-dichlorotetrakis(dimethylsulfoxide)ruthenium(II) does not exhibit linkage isomers.

History

Linkage isomerism was first noted for nitropentaamminecobalt(III) chloride, [Co(NH3)5(NO2)]2+. This cationic cobalt complex can be isolated as either of two linkage isomers. In the yellow-coloured isomer, the nitro ligand is bound through nitrogen. In the red linkage isomer, the nitrito is bound through one oxygen atom. The O-bonded isomer is often written as [Co(NH3)5(ONO)]2+. Although the existence of the isomers had been known since the late 1800s, only in 1907 was the difference explained. [2] It was later shown that the red isomer converted to the yellow isomer upon UV-irradiation. In this particular example, the formation of the nitro isomer (Co-NO2) from the nitrito isomer (Co-ONO) occurs by an intramolecular rearrangement. [3]

Structures of the two linkage isomers of
[Co(NH3)5(NO2)]. LinkageIsomers.png
Structures of the two linkage isomers of [Co(NH3)5(NO2)].

Related Research Articles

<span class="mw-page-title-main">Coordination complex</span> Molecule or ion containing ligands datively bonded to a central metallic atom

A coordination complex consists of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents. Many metal-containing compounds, especially those that include transition metals, are coordination complexes.

<span class="mw-page-title-main">Ligand</span> Ion or molecule that binds to a central metal atom to form a coordination complex

In coordination chemistry, a ligand is an ion or molecule that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electron pairs, often through Lewis bases. The nature of metal–ligand bonding can range from covalent to ionic. Furthermore, the metal–ligand bond order can range from one to three. Ligands are viewed as Lewis bases, although rare cases are known to involve Lewis acidic "ligands".

In chemistry, isomerization or isomerisation is the process in which a molecule, polyatomic ion or molecular fragment is transformed into an isomer with a different chemical structure. Enolization is an example of isomerization, as is tautomerization. When the isomerization occurs intramolecularly it may be called a rearrangement reaction.

In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters between alcohols and nitric acid. The difference between the resulting molecular structures of nitro compounds and nitrates is that the nitrogen atom in nitro compounds is directly bonded to a non-oxygen atom, whereas in nitrate esters, the nitrogen is bonded to an oxygen atom that in turn usually is bonded to a carbon atom.

<span class="mw-page-title-main">Thiocyanate</span> Ion (S=C=N, charge –1)

Thiocyanate is the anion [SCN]. It is the conjugate base of thiocyanic acid. Common derivatives include the colourless salts potassium thiocyanate and sodium thiocyanate. Mercury(II) thiocyanate was formerly used in pyrotechnics.

<span class="mw-page-title-main">Cyanate</span> Anion with formula OCN and charge –1

Cyanate is an anion with the structural formula [O=C=N], usually written OCN. It also refers to any salt containing it, such as ammonium cyanate.

<span class="mw-page-title-main">Metal ammine complex</span>

In coordination chemistry, metal ammine complexes are metal complexes containing at least one ammonia ligand. "Ammine" is spelled this way due to historical reasons; in contrast, alkyl or aryl bearing ligands are spelt with a single "m". Almost all metal ions bind ammonia as a ligand, but the most prevalent examples of ammine complexes are for Cr(III), Co(III), Ni(II), Cu(II) as well as several platinum group metals.

Iron shows the characteristic chemical properties of the transition metals, namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. Iron is sometimes considered as a prototype for the entire block of transition metals, due to its abundance and the immense role it has played in the technological progress of humanity. Its 26 electrons are arranged in the configuration [Ar]3d64s2, of which the 3d and 4s electrons are relatively close in energy, and thus it can lose a variable number of electrons and there is no clear point where further ionization becomes unprofitable.

<span class="mw-page-title-main">Creutz–Taube complex</span>

The Creutz–Taube ion is the metal complex with the formula {[Ru(NH3)5]2(C4H4N2)}5+. This cationic species has been heavily studied in an effort to understand the intimate details of inner sphere electron transfer, that is, how electrons move from one metal complex to another. The ion is named after Carol Creutz, who first prepared the complex, and her thesis advisor Henry Taube, who received a Nobel Prize in Chemistry for this and related discoveries on electron transfer.

<span class="mw-page-title-main">Transition metal dinitrogen complex</span> Coordination compounds with N2

Transition metal dinitrogen complexes are coordination compounds that contain transition metals as ion centers the dinitrogen molecules (N2) as ligands.

<span class="mw-page-title-main">Dichlorotetrakis(dimethylsulfoxide)ruthenium(II)</span> Chemical compound

Dichlorotetrakis(dimethyl sulfoxide) ruthenium(II) describes coordination compounds with the formula RuCl2(dmso)4, where DMSO is dimethylsulfoxide. Both cis and trans isomers are known, but the cis isomer is more common. The cis isomer is a yellow, air-stable solid that is soluble in some organic solvents. These compounds have attracted attention as possible anti-cancer drugs.

Associative substitution describes a pathway by which compounds interchange ligands. The terminology is typically applied to organometallic and coordination complexes, but resembles the Sn2 mechanism in organic chemistry. The opposite pathway is dissociative substitution, being analogous to the Sn1 pathway. Intermediate pathways exist between the pure associative and pure dissociative pathways, these are called interchange mechanisms.

In chemistry, dissociative substitution describes a reaction pathway by which compounds interchange ligands. The term is typically applied to coordination and organometallic complexes, but resembles the SN1 mechanism in organic chemistry. This pathway can be well described by the cis effect, or the labilization of CO ligands in the cis position. The opposite pathway is associative substitution, being analogous to SN2 pathway. Pathways that are intermediate between the pure dissociative and pure associative pathways are called interchange mechanisms.

<span class="mw-page-title-main">Iron tetracarbonyl dihydride</span> Chemical compound

Iron tetracarbonyl dihydride is the organometallic compound with the formula H2Fe(CO)4. This compound was the first transition metal hydride discovered. The complex is stable at low temperatures but decomposes rapidly at temperatures above –20 °C.

<span class="mw-page-title-main">Dichlorotris(triphenylphosphine)ruthenium(II)</span> Chemical compound

Dichlorotris(triphenylphosphine)ruthenium(II) is a coordination complex of ruthenium. It is a chocolate brown solid that is soluble in organic solvents such as benzene. The compound is used as a precursor to other complexes including those used in homogeneous catalysis.

Metal acetylacetonates are coordination complexes derived from the acetylacetonate anion (CH
3
COCHCOCH
3
) and metal ions, usually transition metals. The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal to form a six-membered chelate ring. The simplest complexes have the formula M(acac)3 and M(acac)2. Mixed-ligand complexes, e.g. VO(acac)2, are also numerous. Variations of acetylacetonate have also been developed with myriad substituents in place of methyl (RCOCHCOR′). Many such complexes are soluble in organic solvents, in contrast to the related metal halides. Because of these properties, acac complexes are sometimes used as catalyst precursors and reagents. Applications include their use as NMR "shift reagents" and as catalysts for organic synthesis, and precursors to industrial hydroformylation catalysts. C
5
H
7
O
2
in some cases also binds to metals through the central carbon atom; this bonding mode is more common for the third-row transition metals such as platinum(II) and iridium(III).

<span class="mw-page-title-main">Nitropentaamminecobalt(III) chloride</span> Chemical compound

Nitropentaamminecobalt(III) chloride is an inorganic compound with the molecular formula [Co(NH3)5(NO2)]Cl2. It is an orange solid that is soluble in water. Although it has no applications, the compound has been of academic interest as a source of the transition metal nitrite complex [Co(NH3)5(NO2)]2+.

Nickel(II) nitrite is an inorganic compound with the chemical formula Ni(NO2)2. Anhydrous nickel nitrite was first discovered in 1961 by Cyril Clifford Addison, who allowed gaseous nickel tetracarbonyl to react with dinitrogen tetroxide, yielding a green smoke. Nickel nitrite was the second transition element anhydrous nitrite discovered after silver nitrite.

<span class="mw-page-title-main">Transition metal nitrite complex</span>

Transition metal complexes of nitrite describes families of coordination complexes containing one or more nitrite ligands. Although the synthetic derivatives are only of scholarly interest, metal-nitrite complexes occur in several enzymes that participate in the nitrogen cycle.

<span class="mw-page-title-main">Transition metal sulfoxide complex</span> Class of coordination compounds containing sulfoxide ligands)

A transition metal sulfoxide complex is a coordination complex containing one or more sulfoxide ligands. The inventory is large.

References

  1. Buckingham, D. A.; Creaser, I. I.; Sargeson, A. M. (1970). "Mechanism of Base Hydrolysis for CoIII(NH3)5X2+ Ions. Hydrolysis and Rearrangement for the Sulfur-Bonded Co(NH3)5SCN2+ Ion". Inorg. Chem. 9 (3): 655–661. doi:10.1021/ic50085a044.
  2. Werner, A. (1907). "Über strukturisomere Salze der Rhodanwasserstoffsäure und der salpetrigen Säure". Ber. 40 (1): 765–788. doi:10.1002/cber.190704001117.
  3. Basolo, Fred; Hammaker, G.S (1 February 1962). "Synthesis and Isomerization of Nitritopentammine Complexes of Rhodium(III), Iridium(III), and Platinum(IV)". Inorganic Chemistry. 1 (1): 1–5. doi:10.1021/ic50001a001.