List of UTC timing centers

Last updated

List of UTC timing centers is a list of over 70 recognized maintainers of atomic clocks around the world from which UTC is calculated. [1] Below are links to some of the more notable time centers which contribute to the calculation of UTC. UTC is calculated by the International Bureau of Weights and Measures (BIPM) [2] using weighted averages of the various times as reported by these 70+ listed timing centers. [3] [4] BIPM lists the time differences between the UTC timing centers in a monthly publication called Circular T, which contains the most up to date list of contributors to UTC. [5]

When available, links are provided to the relevant "Time Page" displaying the current time as shown from the given service. Apparent times may vary due to variations in internet transmission times from various locations.

  1. Canada: National Research Council
  2. France: Systemes de Reference Temps Espace, Time Page
  3. Netherlands: VSL, Time page
  4. United Kingdom: National Physical Laboratory
  5. United States: National Institute of Standards and Technology, Time Page
  6. ; https://www.usno.navy.mil/USNO/time

See also

Related Research Articles

International Atomic Time is a high-precision atomic coordinate time standard based on the notional passage of proper time on Earth's geoid. TAI is a weighted average of the time kept by over 450 atomic clocks in over 80 national laboratories worldwide. It is a continuous scale of time, without leap seconds, and it is the principal realisation of Terrestrial Time. It is the basis for Coordinated Universal Time (UTC), which is used for civil timekeeping all over the Earth's surface and which has leap seconds.

<span class="mw-page-title-main">International Bureau of Weights and Measures</span> Intergovernmental measurement science and measurement standards setting organisation

The International Bureau of Weights and Measures is an intergovernmental organisation, through which its 59 member-states act on measurement standards in areas including chemistry, ionising radiation, physical metrology, as well as the International System of Units (SI) and Coordinated Universal Time (UTC). It is based in Saint-Cloud, near Paris, France. The organisation has been referred to as IBWM in older literature.

<span class="mw-page-title-main">Greenwich Mean Time</span> Time zone of Western Europe, same as WET

Greenwich Mean Time (GMT) is the local mean time at the Royal Observatory in Greenwich, London, counted from midnight. At different times in the past, it has been calculated in different ways, including being calculated from noon; as a consequence, it cannot be used to specify a particular time unless a context is given. The term "GMT" is also used as one of the names for the time zone UTC+00:00 and, in UK law, is the basis for civil time in the United Kingdom.

<span class="mw-page-title-main">Leap second</span> Extra second inserted to keep civil time in sync with the Earths rotation

A leap second is a one-second adjustment that is occasionally applied to Coordinated Universal Time (UTC), to accommodate the difference between precise time and imprecise observed solar time (UT1), which varies due to irregularities and long-term slowdown in the Earth's rotation. The UTC time standard, widely used for international timekeeping and as the reference for civil time in most countries, uses TAI and consequently would run ahead of observed solar time unless it is reset to UT1 as needed. The leap second facility exists to provide this adjustment. The leap second was introduced in 1972. Since then, 27 leap seconds have been added to UTC, with the most recent occurring on December 31, 2016. All have so far been positive leap seconds, adding a second to a UTC day; while it is possible for a negative leap second to be needed, one has not happened yet.

<span class="mw-page-title-main">Metre</span> SI unit of length

The metre is the base unit of length in the International System of Units (SI). Since 2019, the metre has been defined as the length of the path travelled by light in vacuum during a time interval of 1/299792458 of a second, where the second is defined by a hyperfine transition frequency of caesium.

<span class="mw-page-title-main">International System of Units</span> Modern form of the metric system

The International System of Units, internationally known by the abbreviation SI, is the modern form of the metric system and the world's most widely used system of measurement. Coordinated by the International Bureau of Weights and Measures it is the only system of measurement with official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce.

<span class="mw-page-title-main">Second</span> SI unit of time

The second is the unit of time in the International System of Units (SI), historically defined as 186400 of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds each. "Minute" comes from the Latin pars minuta prima, meaning "first small part", and "second" comes from the pars minuta secunda, "second small part".

Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses TT for its tables of positions (ephemerides) of the Sun, Moon and planets as seen from Earth. In this role, TT continues Terrestrial Dynamical Time, which succeeded ephemeris time (ET). TT shares the original purpose for which ET was designed, to be free of the irregularities in the rotation of Earth.

<span class="mw-page-title-main">Avogadro constant</span> Fundamental metric system constant defined as the number of particles per mole

The Avogadro constant, commonly denoted NA or L, is an SI defining constant with an exact value of 6.02214076×1023 mol−1 (reciprocal moles). It is defined as the number of constituent particles (usually molecules, atoms, or ions) per mole (SI unit) and used as a normalization factor in the amount of substance in a sample. The constant is named after the physicist and chemist Amedeo Avogadro (1776–1856).

A time standard is a specification for measuring time: either the rate at which time passes or points in time or both. In modern times, several time specifications have been officially recognized as standards, where formerly they were matters of custom and practice. An example of a kind of time standard can be a time scale, specifying a method for measuring divisions of time. A standard for civil time can specify both time intervals and time-of-day.

The dalton or unified atomic mass unit is a non-SI unit of mass defined as 1/12 of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest. The atomic mass constant, denoted mu, is defined identically, giving mu = 1/12m(12C) = 1 Da.

<span class="mw-page-title-main">United States Naval Observatory</span> Scientific agency in the United States

The United States Naval Observatory (USNO) is a scientific and military facility that produces geopositioning, navigation and timekeeping data for the United States Navy and the United States Department of Defense. Established in 1830 as the Depot of Charts and Instruments, it is one of the oldest scientific agencies in the United States, and remains the country's leading facility for astronomical and timing data.

Time and frequency transfer is a scheme where multiple sites share a precise reference time or frequency. The technique is commonly used for creating and distributing standard time scales such as International Atomic Time (TAI). Time transfer solves problems such as astronomical observatories correlating observed flashes or other phenomena with each other, as well as cell phone towers coordinating handoffs as a phone moves from one cell to another.

<span class="mw-page-title-main">WWV (radio station)</span> U.S. government shortwave radio station

WWV is a shortwave radio station, located near Fort Collins, Colorado. It has broadcast a continuous time signal since 1945, and implements United States government frequency standards, with transmitters operating on 2.5, 5, 10, 15, and 20 MHz. WWV is operated by the U.S. National Institute of Standards and Technology (NIST), under the oversight of its Time and Frequency Division, which is part of NIST's Physical Measurement Laboratory based in Gaithersburg, Maryland.

<span class="mw-page-title-main">Indian Standard Time</span> Time zone, observed in India and Sri Lanka; UTC+05:30

Indian Standard Time (IST), sometimes also called India Standard Time, is the time zone observed throughout the Republic of India, with a time offset of UTC+05:30. India does not observe daylight saving time or other seasonal adjustments. In military and aviation time, IST is designated E* ("Echo-Star"). It is indicated as Asia/Kolkata in the IANA time zone database.

In modern usage, civil time refers to statutory time as designated by civilian authorities. Modern civil time is generally national standard time in a time zone at a fixed offset from Coordinated Universal Time (UTC), possibly adjusted by daylight saving time during part of the year. UTC is calculated by reference to atomic clocks and was adopted in 1972. Older systems use telescope observations.

<span class="mw-page-title-main">Coordinated Universal Time</span> Primary time standard

Coordinated Universal Time (UTC) is the primary time standard globally used to regulate clocks and time. It establishes a reference for the current time, forming the basis for civil time and time zones. UTC facilitates international communication, navigation, scientific research, and commerce.

<span class="mw-page-title-main">Atomic clock</span> Extremely accurate clock

An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions between such states they interact with a very specific frequency of electromagnetic radiation. This phenomenon serves as the basis for the International System of Units' (SI) definition of a second:

The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency, , the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom, to be 9192631770 when expressed in the unit Hz, which is equal to s−1.

Symmetricom, Inc. develops, manufactures, and supplies timekeeping technology to customers in industry and government worldwide that require extremely precise synchronization. Symmetricom products supported precise timing standards, including GPS-based timing, IEEE 1588 (PTP), Network Time Protocol (NTP), Synchronous Ethernet and Data Over Cable Service Interface Specifications (DOCSIS®) timing.

Time synchronization in North America can be achieved with many different methods, some of which require only a telephone, while others require expensive, sensitive, and rare electronic equipment. In the United States, the United States Naval Observatory provides the standard of time, called UTC(USNO), for the United States military and the Global Positioning System, while the National Institute of Standards and Technology provides the standard of time for civil purposes in the United States, called UTC(NIST).

References

  1. List of UTC timing centers BIPM (Bureau International des Poids et Mesures). Downloaded June 23, 2016.
  2. National Metrology Institutes (NMIs) BIPM
  3. Establishment of International Atomic Time and of Coordinated Universal Time BIPM description of UTC calculation procedures. Downloaded June 23, 2016.
  4. The Science of Timekeeping by Agilent Technologies, 1997, 2000. Downloaded June 23, 2016.
  5. "Circular T". Circular T- BIPM. BIPM. Retrieved 1 July 2024.