List of peak-calling software

Last updated

Peak calling is a computational method to identify enriched regions of genome using sequencing data from immuno-precipitation-based DNA profiling methods such as ChIP-Seq, DNase-Seq, ATAC-seq, MeDIP-Seq, and related methods. This incomplete list includes tools that are commonly used for peak calling in bioinformatics analyses. [1]

List of peak-calling software
ProgramYear publishedAuthor(s)DescriptionLicenseLatest VersionActive developmentSource
MACS 2021 (3.x)

2012 (2.x)

2008

Yong Zhang, Tao Liu, Clifford A Meyer, Michael S Lawrence, et al.Model-based Analysis of ChIP-Seq. Widely used for identifying narrow peaks (e.g., transcription factor binding sites). Models the characteristic tag shift size of ChIP-seq data and utilizes control samples for noise reduction. BSD 3-Clause 3.0.3 (Feb 20, 2025)

2.2.9.1 (Dec 2023)

Yes [2]
SICER2019 (SICER2)

2009

Chongzhi Zang, David E. Schones, Keji Zhao, W. Lee Kraus, et al.Spatial clustering approach initially developed for identifying diffuse signals and broad genomic regions of enrichment MIT License 1.0.2 (Feb 21, 2020)No [3]
epic22019Johannes Dröge, Johannes Alneberg, et al.A reimplementation of the SICER algorithm focused on improving performance (speed, memory usage) for identifying broad domains. MIT License 0.2.2 (May 2023)Yes [4]
HOMER2010Sven Heinz, Christopher Benner, Nelson Nery, et al.Part of a software suite, the `findPeaks` utility performs peak calling, with distinct modes for narrow peaks ('factor' style) and broad domains ('histone' style). GPL / Custom Academic4.11 (Nov 2019)No [5]
SPP (R package)2008Peter V. Kharchenko, Mikhail Y. Tolstorukov, Peter J. ParkUses cross-correlation analysis to estimate fragment length and identify signal peaks. It was incorporated into the ENCODE analysis pipeline. Artistic License 2.0 1.15.4 (Oct 2023 / Bioconductor 3.18)No
Genrich2018 [p] John S Hageman, Paweł Czyż, et al.Supports handling of multi-mapping reads, PCR duplicate removal, and integrated analysis of multiple replicates using Fisher's method. MIT License 0.6.1 (Jun 2021)No [6]
HPeak2010Zhaohui S Qin, Yongqun He, Arul M Chinnaiyan, et al.Peak-finding algorithm based on a Hidden Markov Model (HMM).Free Academic Use1.0 (?)No
JAMM2015Mahmoud M. Ibrahim, Scott A. Lacadie, Nikolaus Rajewsky, et al.Uses mixture model clustering of biological replicates. GPL-3.0-only 1.0.7rev6 (~2014)No
PePr2014Yanxiao Zhang, Maureen A. SartorUses a sliding window approach modeling read counts with a negative binomial distribution. Ranks identified peaks based on consistency across replicates. GPL-3.0-only 1.1.20 (Sep 2019)No [7]
LanceOtron2022Ross S. Harris, Nathan D. Leclair, et al.Deep learning (convolutional neural network) based peak caller. GPL-3.0-only 1.0.1 (Jun 2023)Yes [8]
SEACR2019Michael P. Meers, Daniel Tenenbaum, Steven HenikoffDesigned for low-background enrichment data common in techniques like CUT&RUN and CUT&Tag. It identifies enriched regions by comparing signal against the total signal, avoiding traditional input normalization. MIT License 1.3 (May 2019)No [9]
GoPeaks2021Vincent A. Zuber, Jeffrey E. Maxson, et al.Designed for CUT&RUN and CUT&Tag datasets. MIT License 1.0.0 (Feb 2023)Yes [10]
pPublished as pre-print

References

  1. Nooranikhojasteh, Amin; Tavallaee, Ghazaleh; Orouji, Elias (2025-07-01). "Benchmarking peak calling methods for CUT&RUN". Bioinformatics. 41 (7) btaf375. doi:10.1093/bioinformatics/btaf375. ISSN   1367-4811. PMC   12255880 . PMID   40569178.
  2. macs3-project/MACS, MACS3 project team, 2025-05-16, retrieved 2025-05-19
  3. UVA, Zang Lab @ (2025-03-15), zanglab/SICER2 , retrieved 2025-05-19
  4. Stovner, Endre Bakken; Sætrom, Pål (March 28, 2019). "epic2 efficiently finds diffuse domains in ChIP-seq data". Bioinformatics. 35 (21). Oxford University Press (OUP): 4392–4393. doi:10.1093/bioinformatics/btz232. ISSN   1367-4803. PMID   30923821.
  5. "Homer Software and Data Download". homer.ucsd.edu. Retrieved December 22, 2025.
  6. Wenz, Brandon M.; He, Yuan; Chen, Nae-Chyun; Pickrell, Joseph K.; Li, Jeremiah H.; Dudek, Max F.; Li, Taibo; Keener, Rebecca; Voight, Benjamin F.; Brown, Christopher D.; Battle, Alexis (September 5, 2024), Genotype inference from aggregated chromatin accessibility data reveals genetic regulatory mechanisms, Cold Spring Harbor Laboratory, doi:10.1101/2024.09.04.610850
  7. Zhang, Yanxiao; Lin, Yu-Hsuan; Johnson, Timothy D.; Rozek, Laura S.; Sartor, Maureen A. (2014-09-15). "PePr: a peak-calling prioritization pipeline to identify consistent or differential peaks from replicated ChIP-Seq data". Bioinformatics (Oxford, England). 30 (18): 2568–2575. doi:10.1093/bioinformatics/btu372. PMC   4155259 . PMID   24894502.
  8. Hentges, Lance D.; Sergeant, Martin J.; Downes, Damien J.; Hughes, Jim R.; Taylor, Stephen (2021-01-27). "LanceOtron: a deep learning peak caller for ATAC-seq, ChIP-seq, and DNase-seq". doi.org. doi:10.1101/2021.01.25.428108 . Retrieved 2025-12-24.
  9. Meers, Michael P.; Tenenbaum, Dan; Henikoff, Steven (2019-07-12). "Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling". Epigenetics & Chromatin. 12 42. doi: 10.1186/s13072-019-0287-4 . PMID   31300027.
  10. Yashar, William M; Kong, Garth; VanCampen, Jake; Smith, Brittany M; Coleman, Daniel J; Carbone, Lucia; Yardimci, Galip Gürkan; Maxson, Julia E; Braun, Theodore P (2022-01-12). "GoPeaks: Histone Modification Peak Calling for CUT&Tag". doi.org. doi:10.1101/2022.01.10.475735 . Retrieved 2025-12-24.