List of systems biology modeling software

Last updated

Systems biology relies heavily on building mathematical models to help understand and make predictions of biological processes. Specialized software to assist in building models has been developed since the arrival of the first digital computers. [1] [2] [3] [4] The following list gives the currently supported software applications available to researchers.

Contents

The vast majority of modern systems biology modeling software support SBML, which is the de facto standard for exchanging models of biological cellular processes. Some tools also support CellML, a standard used for representing physiological processes. The advantage of using standard formats is that even though a particular software application may eventually become unsupported and even unusable, the models developed by that application can be easily transferred to more modern equivalents. This allows scientific research to be reproducible long after the original publication of the work.

To obtain more information about a particular tool, click on the name of the tool. This will direct you either to a peer-reviewed publication or, in some rare cases, to a dedicated Wikipedia page.

Actively supported open-source software applications

General information

When an entry in the SBML column states "Yes, but only for reactions.", it means that the tool only supports the reaction component of SBML. For example, rules, events, etc. are not supported.

NameDescription/NotabilityOSLicenseSite SBML Support
iBioSim iBioSim [5] [6] is a computer-aided design (CAD) tool for the modeling, analysis, and design of genetic circuits.multiplatform (Java/C++) Apache License Yes
CompuCell3D GUI/Scripting tool [7] for building and simulating multicellular models.multiplatform (C++/Python) MIT Yes, but only for reactions.
COPASI GUI tool [8] [9] for analyzing and simulating SBML models.multiplatform (C++)Artistic License Yes
Cytosim Spatial simulator for flexible cytoskeletal filaments and motor proteins [10] Mac, Linux, Cygwin (C++) GPL3 Not applicable
libroadrunner High-performance software library for simulation and analysis of SBML models [11] [12] multiplatform (C/C++) Apache License Yes
massPy Simulation tool [13] [14] that can work with COBRApy [15] multiplatform (Python) MIT Yes
MCell GUI tool for particle-based spatial stochastic simulation with individual molecules [16] [17] [18] multiplatform MIT and GPLv2 Not applicable
OpenCOR A cross-platform modelling environment, which is aimed at organizing, editing, simulating, and analysing CellML files on Windows, Linux and macOS.multiplatform (C++/Python) GPLv3 Uses CellML
PhysiBoSS A specialized form of the PhysiCell agent-based modeling platform that directly integrates Boolean signaling networks into cell Agents [19] multiplatform (C++) BSD-3 Yes, but only for reactions
PhysiCell A agent-based [20] modeling framework for multicellular systems biology.multiplatform (C++) BSD-3 Yes, but only for reactions
PySCeS Python tool for modeling and analyzing SBML models [21] [22] [23] multiplatform (Python) BSD-3 Yes
pySB Python-based [24] platform with specialization in rule-based models.multiplatform (Python) BSD-3 Partial
ReaDDy Particle-based spatial simulator with intermolecular potentials [25] Linux and MacCustom Not applicable
SBSCL Java library [26] [27] with efficient and exhaustive support for SBMLmultiplatform (Java) LGPL Yes
SBW (software) A distributed workbench [28] [29] that includes many modeling toolsmultiplatform (C/C++) BSD-3 Yes
Smoldyn Particle-based simulator for spatial stochastic simulations with individual molecules [30] [31] [32] [33] multiplatform (C/C++/Python) LGPL Not applicable
Spatiocyte Spatial modeling software that uses a fine lattice with up to one molecule per site [34] [35] multiplatformUnknown Not applicable
SpringSaLaD Particle-based spatial simulator in which molecules are spheres that are linked by springs [36] multiplatformUnknown Not applicable
STEPS Stochastic reaction-diffusion and membrane potential solver on distributed meshes [37] [38] [39] [40] multiplatform (C++/Python) GPLv2 Partial
Tellurium (software) Simulation environment, [41] [42] that packages multiple libraries into one platform.multiplatform (Python) Apache License Yes
URDME Stochastic reaction-diffusion simulation on unstructured meshes [43] MatLab on Mac, LinuxGPL3 Not applicable
VCell Comprehensive modeling platform [44] [45] for non-spatial, spatial, deterministic and stochastic simulations, including both reaction networks and reaction rules.multiplatform (Java) MIT Yes

Specialist Tools

The following table lists specialist tools that cannot be grouped with the modeling tools.

NameDescription/NotabilityOSLicenseSite
PySCeSToolbox PySCeSToolbox [46] is a set of metabolic model analysis tools. Among other features, it can be used to generate the control analysis equations that relate the elasticities to the control coefficients. The package is cross-platform and requires PySCeS and Maxima to operate.multiplatform (C++/Python) BSD-3

Feature Tables

Supported modeling paradigms

NameODEConstraint basedStochasticLogicalAgent basedSpatial (particle)Spatial (continuous)
iBioSimYesNoYesNoLimitedNoNo
CompuCell3DYesNoNoNoYesNoYes
COPASIYesNoYesNoNoNoNo
CytosimNoNoYesNo ?Yes ?
libroadrunnerYesNoYesNoNoNoNo
massPyUses libroadrunnerUses COBRApyNoNoNoNo
MCellNoNoYesNoNoYesNo
OpenCORYesNoNoNoNoNoNo
PhysiBoSS
PhysiCellUses libroadrunnerNoNoNoYes ?Yes
PySCeSYesNo ?NoNoNoNo
pySBYesNoNoNoNoNoNo
ReaDDy
SBSCLYes ? ?NoNoNoNo
SBWYesNoYesNoNoNoNo
SmoldynNoNoYesNoNoYesNo
Spatiocyte
SpringSaLaD
STEPS
Tellurium (software)Uses libroadrunner
URDME
VCellYesNo ?NoNoNoSingle Cell

Differential equation specific features

NameNon-stiff solverStiff solverSteady-state solverSteady-state sensitivitiesTime-dependent sensitivitiesBifurcation Analysis
iBioSimYesYesNoNo ?No
CompuCell3DUses libroadrunnerNA
COPASIYesYesYesYes ?Limited
libroadrunnerYesYesYesYesYesvia AUTO2000 plugin
masspyUses libroadrunner
OpenCORYesYes ? ? ?No
PhysiBoSS
PhysiCellUses libroadrunner
PySCeSYesYesYesYes ?Limited+
pySBYesNoNoNoNoNo
SBSCL
SBWUses C# edition of roadrunnerYes
Tellurium (software)Uses libroadrunner
VCellYesYesNoNoNoNo

File format support and interface type

NameImportExportPrimary InterfaceNetwork visualization (editing)
iBioSimSBMLSBMLGUIYes (Yes)
CompuCell3DNative XML specification format and SBMLNative XMLGUI/Python scriptingNo
COPASINative XML specification format and SBMLNative XML and SBMLGUIYes (No)
libroadrunnerSBMLSBMLPython scriptingNo
masspySBMLSBMLPython scriptingNo

Advanced features (where applicable)

NameStoichiometry matrixReduced stoich matrixConserved moiety analysisJacobianMCA
COPASIYesYesYesYesYes
libroadrunnerYesYesYesYesYes
masspyvia libroadrunner
PySCeSYesYesYesYesYes
VCell ? ? ? ?Limited

Other features

NameParameter EstimationDAE supportUnits support
iBioSimNo ? ?
ComputeCell3DNANA ?
COPASIYesLimitedYes
libroadrunnervia Python packagesLimitedYes
masspyvia Python packagesLimitedYes

Particle-based simulators

Particle based simulators treat each molecule of interest as an individual particle in continuous space, simulating molecular diffusion, molecule-membrane interactions and chemical reactions. [47]

Comparison of particle-based simulators

The following list compares the features for several particle-based simulators. This table is edited from a version that was originally published in the Encyclopedia of Computational Neuroscience. [48] System boundaries codes: R = reflecting, A = absorbing, T = transmitting, P = periodic, and I = interacting. * Algorithm is exact but software produced incorrect results at the time of original table compilation. † These benchmark run times are not comparable with others due to differing levels of detail.

FeatureMCellSmoldyneGFRDSpringSaLaDReaDDy
Time steps~1 usns to msevent-based~10 ns~0.1 ns to us
Moleculespointspoints, spheresspheresmulti-spheresmulti-spheres
Dimensions2,31,2,3333
System boundariesR,A,P,TR,A,P,TPRP,I
Surfacestriangle meshmany primitives-1 flat surfaceplane, sphere
Surface molecules1/tile, 2 statesunlimited, 4 states-unlimited, 3 states-
Excluded volume-excellentexactgoodexcellent
Multimersstates onlyrule-based model-explicitexplicit
Allostery-yes-yes-
Reaction accuracyvery goodexcellentexact*excellentexcellent
Dissociation productsstochasticfixed separationadjacentadjacentadjacent
Molecule-surface interactionsgoodexcellent-to sites onlypotentials
Long-range interactions-yes--yes
Benchmark run time67 s22 s13 days†9.1 months†13 minutes
Distributionexecutableexecutableself-compileJava fileself-compile
User interfaceGUI, texttexttextGUIPython script
Graphical outputexcellentgoodpartial supportpartial supportgood
Library interfacePythonC/C++, Python--Python
References

[49] [50] [51]

[52] [53] [54] [55] [56] [57] [58]

Model calibration software

Model calibration is a key activity when developing systems biology models. This table highlights some of the current model calibration tools available to systems biology modelers. The first table list tools that are SBML compatible.

ToolPEtab CompatibleP1P2
pyPESTO [59] YesNANA
COPASIYesNANA

PEtab [60] is a community standard for specifying model calibration runs.

Legacy open-source software applications

The following list some very early software for modeling biochemical systems that were developed pre-1980s There are listed for historical interest.

NameDescription/NotabilityLanguageTerminus ante quem [61]
BIOSIM [62] The first ever recorded digital simulator of biochemical networks (by David Garfinkel)FORTRAN IV1968
KDF 9 [63] First simulator to support MCA. Developed by the late Jim Burns in EdinburghEarly form of FORTRAN1968
METASIM [64] Early simulator by Park and WrightPL/11973

The following list shows some of the software modeling applications that were developed in the 1980s and 1990s. There are listed for historical interest.

NameDescription/NotabilityLanguage SBML SupportTerminus ante quem [65]
COR [66] First public CellML-based environment.Object PascalUses CellML 2010
DBsolve [67] Early GUI based simulation platform.C/C++No1999
E-Cell [68] One of the earliest attempts at a whole-cell modeling platform.C/C++No1999
Gepasi [69] First GUI application that supported metabolic control analysis and parameter estimation.C/C++Yes1993
Jarnac [70] First GUI based application to support scripting in systems biology modeling.Object PascalYes2000
JSim [71] First Java-based systems biology modeling platformJavaYes2003
MetaMod [72] One of the first PC-based systems biology simulatorsBBC MicroNo1986
MetaModel [73] Early PC-based systems biology simulatorTurbo Pascal 5.0No1991
MIST [74] GUI based simulatorBorland Pascal 7.0No1995
SCAMP [75] First application to support metabolic control analysis and simulation on a PCPascal, later in CNo1985 (Thesis)

Related Research Articles

<span class="mw-page-title-main">Bioinformatics</span> Computational analysis of large, complex sets of biological data

Bioinformatics is an interdisciplinary field of science that develops methods and software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, chemistry, physics, computer science, computer programming, information engineering, mathematics and statistics to analyze and interpret biological data. The subsequent process of analyzing and interpreting data is referred to as computational biology.

<span class="mw-page-title-main">Computational biology</span> Branch of biology

Computational biology refers to the use of data analysis, mathematical modeling and computational simulations to understand biological systems and relationships. An intersection of computer science, biology, and big data, the field also has foundations in applied mathematics, chemistry, and genetics. It differs from biological computing, a subfield of computer science and engineering which uses bioengineering to build computers.

<span class="mw-page-title-main">Gene regulatory network</span> Collection of molecular regulators

A generegulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins which, in turn, determine the function of the cell. GRN also play a central role in morphogenesis, the creation of body structures, which in turn is central to evolutionary developmental biology (evo-devo).

<span class="mw-page-title-main">Systems biology</span> Computational and mathematical modeling of complex biological systems

Systems biology is the computational and mathematical analysis and modeling of complex biological systems. It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach to biological research.

In academia, computational immunology is a field of science that encompasses high-throughput genomic and bioinformatics approaches to immunology. The field's main aim is to convert immunological data into computational problems, solve these problems using mathematical and computational approaches and then convert these results into immunologically meaningful interpretations.

<span class="mw-page-title-main">Metabolic network modelling</span> Form of biological modelling

Metabolic network modelling, also known as metabolic network reconstruction or metabolic pathway analysis, allows for an in-depth insight into the molecular mechanisms of a particular organism. In particular, these models correlate the genome with molecular physiology. A reconstruction breaks down metabolic pathways into their respective reactions and enzymes, and analyzes them within the perspective of the entire network. In simplified terms, a reconstruction collects all of the relevant metabolic information of an organism and compiles it in a mathematical model. Validation and analysis of reconstructions can allow identification of key features of metabolism such as growth yield, resource distribution, network robustness, and gene essentiality. This knowledge can then be applied to create novel biotechnology.

Systems immunology is a research field under systems biology that uses mathematical approaches and computational methods to examine the interactions within cellular and molecular networks of the immune system. The immune system has been thoroughly analyzed as regards to its components and function by using a "reductionist" approach, but its overall function can't be easily predicted by studying the characteristics of its isolated components because they strongly rely on the interactions among these numerous constituents. It focuses on in silico experiments rather than in vivo.

Fluxomics describes the various approaches that seek to determine the rates of metabolic reactions within a biological entity. While metabolomics can provide instantaneous information on the metabolites in a biological sample, metabolism is a dynamic process. The significance of fluxomics is that metabolic fluxes determine the cellular phenotype. It has the added advantage of being based on the metabolome which has fewer components than the genome or proteome.

<span class="mw-page-title-main">Guanylate kinase</span> Enzyme

In enzymology, a guanylate kinase is an enzyme that catalyzes the chemical reaction

Anders Krogh is a bioinformatician at the University of Copenhagen, where he leads the university's bioinformatics center. He is known for his pioneering work on the use of hidden Markov models in bioinformatics, and is co-author of a widely used textbook in bioinformatics. In addition, he also co-authored one of the early textbooks on neural networks. His current research interests include promoter analysis, non-coding RNA, gene prediction and protein structure prediction.

The ISCB Overton Prize is a computational biology prize awarded annually for outstanding accomplishment by a scientist in the early to mid stage of his or her career. Laureates have made significant contribution to the field of computational biology either through research, education, service, or a combination of the three.

The ISCB Accomplishment by a Senior Scientist Award is an annual prize awarded by the International Society for Computational Biology for contributions to the field of computational biology.

Trey Ideker is a professor of medicine and bioengineering at UC San Diego. He is the Director of the National Resource for Network Biology, the San Diego Center for Systems Biology, and the Cancer Cell Map Initiative. He uses genome-scale measurements to construct network models of cellular processes and disease.

Multi-state modeling of biomolecules refers to a series of techniques used to represent and compute the behaviour of biological molecules or complexes that can adopt a large number of possible functional states.

<span class="mw-page-title-main">Curtis Huttenhower</span> American biologist (born 1981)

Curtis Huttenhower is a Professor of Computational Biology and Bioinformatics in the Department of Biostatistics, School of Public Health, Harvard University.

Nicolas Le Novère is a British and French biologist. His research focuses on modeling signaling pathways and developing tools to share mathematical models.

Cell-based models are mathematical models that represent biological cells as discrete entities. Within the field of computational biology they are often simply called agent-based models of which they are a specific application and they are used for simulating the biomechanics of multicellular structures such as tissues. to study the influence of these behaviors on how tissues are organised in time and space. Their main advantage is the easy integration of cell level processes such as cell division, intracellular processes and single-cell variability within a cell population.

C-ImmSim started, in 1995, as the C-language "version" of IMMSIM, the IMMune system SIMulator, a program written back in 1991 in APL-2 by the astrophysicist Phil E. Seiden together with the immunologist Franco Celada to implement the Celada-Seiden model. The porting was mainly conducted and further developed by Filippo Castiglione with the help of few other people.

libRoadRunner is a C/C++ software library that supports simulation of SBML based models.. It uses LLVM to generate extremely high-performance code and is the fastest SBML-based simulator currently available. Its main purpose is for use as a reusable library that can be hosted by other applications, particularly on large compute clusters for doing parameter optimization where performance is critical. It also has a set of Python bindings that allow it to be easily used from Python.

Smoldyn is an open-source software application for cell-scale biochemical simulations. It uses particle-based simulation, meaning that it simulates each molecule of interest individually, in order to capture natural stochasticity and yield nanometer-scale spatial resolution. Simulated molecules diffuse, react, are confined by surfaces, and bind to membranes in similar manners as in real biochemical systems.

References

  1. Chance, Britton; Garfinkel, David; Higgins, Joseph; Hess, Benno; Chance, E.M. (August 1960). "Metabolic Control Mechanisms". Journal of Biological Chemistry. 235 (8): 2426–2439. doi: 10.1016/S0021-9258(18)64638-1 .
  2. Chance, Britton; Higgins, Joseph; Garfinkel, David (1962). Analogue and digital computer representations of biochemical processes. Federation of American Societies for Experimental Biology..: Federation Proceedings, Vol 12. No. 1-2. p. 75.
  3. Burns, Jim (1 March 1973). Metabolic Control Analysis. Thesis (Thesis). doi:10.5281/zenodo.7240738.
  4. Garfinkel, David (August 1968). "A machine-independent language for the simulation of complex chemical and biochemical systems". Computers and Biomedical Research. 2 (1): 31–44. doi:10.1016/0010-4809(68)90006-2. PMID   5743538.
  5. Watanabe, Leandro; Nguyen, Tramy; Zhang, Michael; Zundel, Zach; Zhang, Zhen; Madsen, Curtis; Roehner, Nicholas; Myers, Chris (19 July 2019). "iBioSim3: A Tool for Model-Based Genetic Circuit Design". ACS Synthetic Biology. 8 (7): 1560–1563. doi:10.1021/acssynbio.8b00078. PMID   29944839. S2CID   49429947.
  6. Martínez-García, Esteban; Goñi-Moreno, Angel; Bartley, Bryan; McLaughlin, James; Sánchez-Sampedro, Lucas; Pascual del Pozo, Héctor; Prieto Hernández, Clara; Marletta, Ada Serena; De Lucrezia, Davide; Sánchez-Fernández, Guzmán; Fraile, Sofía; de Lorenzo, Víctor (8 January 2020). "SEVA 3.0: an update of the Standard European Vector Architecture for enabling portability of genetic constructs among diverse bacterial hosts". Nucleic Acids Research. 48 (D1): D1164–D1170. doi:10.1093/nar/gkz1024. PMC   7018797 . PMID   31740968.
  7. Swat, Maciej H.; Thomas, Gilberto L.; Belmonte, Julio M.; Shirinifard, Abbas; Hmeljak, Dimitrij; Glazier, James A. (2012). "Multi-Scale Modeling of Tissues Using CompuCell3D". Computational Methods in Cell Biology. Vol. 110. pp. 325–366. doi:10.1016/B978-0-12-388403-9.00013-8. ISBN   9780123884039. PMC   3612985 . PMID   22482955.
  8. Bergmann, Frank T.; Hoops, Stefan; Klahn, Brian; Kummer, Ursula; Mendes, Pedro; Pahle, Jürgen; Sahle, Sven (November 2017). "COPASI and its applications in biotechnology". Journal of Biotechnology. 261: 215–220. doi:10.1016/j.jbiotec.2017.06.1200. PMC   5623632 . PMID   28655634.
  9. Yeoh, Jing Wui; Ng, Kai Boon Ivan; Teh, Ai Ying; Zhang, JingYun; Chee, Wai Kit David; Poh, Chueh Loo (19 July 2019). "An Automated Biomodel Selection System (BMSS) for Gene Circuit Designs". ACS Synthetic Biology. 8 (7): 1484–1497. doi:10.1021/acssynbio.8b00523. PMID   31035759. S2CID   140321282.
  10. Nedelec, Francois; Foethke, Dietrich (2007). "Collective Langevin dynamics of flexible cytoskeletal fibers". New Journal of Physics. 9 (11): 427. arXiv: 0903.5178 . Bibcode:2007NJPh....9..427N. doi:10.1088/1367-2630/9/11/427. S2CID   16924457.
  11. Somogyi, Endre T.; Bouteiller, Jean-Marie; Glazier, James A.; König, Matthias; Medley, J. Kyle; Swat, Maciej H.; Sauro, Herbert M. (15 October 2015). "libRoadRunner: a high performance SBML simulation and analysis library: Table 1". Bioinformatics. 31 (20): 3315–3321. doi:10.1093/bioinformatics/btv363. PMC   4607739 . PMID   26085503.
  12. Ghaffarizadeh, Ahmadreza; Heiland, Randy; Friedman, Samuel H.; Mumenthaler, Shannon M.; Macklin, Paul (23 February 2018). "PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems". PLOS Computational Biology. 14 (2): e1005991. Bibcode:2018PLSCB..14E5991G. doi: 10.1371/journal.pcbi.1005991 . PMC   5841829 . PMID   29474446.
  13. Haiman, Zachary B.; Zielinski, Daniel C.; Koike, Yuko; Yurkovich, James T.; Palsson, Bernhard O. (28 January 2021). "MASSpy: Building, simulating, and visualizing dynamic biological models in Python using mass action kinetics". PLOS Computational Biology. 17 (1): e1008208. Bibcode:2021PLSCB..17E8208H. doi: 10.1371/journal.pcbi.1008208 . PMC   7872247 . PMID   33507922.
  14. Foster, Charles J; Wang, Lin; Dinh, Hoang V; Suthers, Patrick F; Maranas, Costas D (February 2021). "Building kinetic models for metabolic engineering". Current Opinion in Biotechnology. 67: 35–41. doi:10.1016/j.copbio.2020.11.010. PMID   33360621. S2CID   229690954.
  15. Ebrahim, Ali; Lerman, Joshua A; Palsson, Bernhard O; Hyduke, Daniel R (December 2013). "COBRApy: COnstraints-Based Reconstruction and Analysis for Python". BMC Systems Biology. 7 (1): 74. doi: 10.1186/1752-0509-7-74 . PMC   3751080 . PMID   23927696.
  16. Stiles, Joel R.; Van Helden, Dirk; Bartol, Thomas M.; Salpeter, Edwin E.; Salpeter, Miriam M (1996). "Miniature endplate current rise times <100 us from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle". Proc. Natl. Acad. Sci. USA. 93 (12): 5747–5752. doi: 10.1073/pnas.93.12.5747 . PMC   39132 . PMID   8650164.
  17. Stiles, Joel R.; Bartol, Thomas M. (2001). "Monte Carlo methods for simulating realistic synaptic microphysiology using MCell". Computational Neuroscience: Realistic Modeling for Experimentalists: 87–127.
  18. Kerr, R; Bartol, TM; Kaminsky, B; Dittrich, M; Chang, JCJ; Baden, S; Sejnowski, TJ; Stiles, JR (2008). "Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces". SIAM J. Sci. Comput. 30 (6): 3126–3149. Bibcode:2008SJSC...30.3126K. doi:10.1137/070692017. PMC   2819163 . PMID   20151023.
  19. Letort, Gaelle; Montagud, Arnau; Stoll, Gautier; Heiland, Randy; Barillot, Emmanuel; Macklin, Paul; Zinovyev, Andrei; Calzone, Laurence (1 April 2019). "PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling". Bioinformatics. 35 (7): 1188–1196. doi:10.1093/bioinformatics/bty766. PMC   6449758 . PMID   30169736.
  20. Ghaffarizadeh, Ahmadreza; Heiland, Randy; Friedman, Samuel H.; Mumenthaler, Shannon M.; Macklin, Paul (23 February 2018). "PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems". PLOS Computational Biology. 14 (2): e1005991. Bibcode:2018PLSCB..14E5991G. doi: 10.1371/journal.pcbi.1005991 . PMC   5841829 . PMID   29474446.
  21. Olivier, B. G.; Rohwer, J. M.; Hofmeyr, J.-H. S. (15 February 2005). "Modelling cellular systems with PySCeS". Bioinformatics. 21 (4): 560–561. doi: 10.1093/bioinformatics/bti046 . PMID   15454409.
  22. Mendoza-Cózatl, David G.; Moreno-Sánchez, Rafael (February 2006). "Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants". Journal of Theoretical Biology. 238 (4): 919–936. Bibcode:2006JThBi.238..919M. doi:10.1016/j.jtbi.2005.07.003. PMID   16125728.
  23. Ghaffarizadeh, Ahmadreza; Heiland, Randy; Friedman, Samuel H.; Mumenthaler, Shannon M.; Macklin, Paul (23 February 2018). "PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems". PLOS Computational Biology. 14 (2): e1005991. Bibcode:2018PLSCB..14E5991G. doi: 10.1371/journal.pcbi.1005991 . PMC   5841829 . PMID   29474446.
  24. Stefan, Melanie I.; Bartol, Thomas M.; Sejnowski, Terrence J.; Kennedy, Mary B. (25 September 2014). "Multi-state Modeling of Biomolecules". PLOS Computational Biology. 10 (9): e1003844. Bibcode:2014PLSCB..10E3844S. doi: 10.1371/journal.pcbi.1003844 . PMC   4201162 . PMID   25254957.
  25. Schöneberg, J.; Ullrich, A.; Noé, F. (2014). "Simulation tools for particle-based reaction-diffusion dynamics in continuous space". BMC Biophys. 7: 11. doi: 10.1186/s13628-014-0011-5 . PMC   4347613 . PMID   25737778.
  26. Panchiwala, H; Shah, S; Planatscher, H; Zakharchuk, M; König, M; Dräger, A (23 September 2021). "The Systems Biology Simulation Core Library". Bioinformatics. 38 (3): 864–865. doi:10.1093/bioinformatics/btab669. PMC   8756180 . PMID   34554191.
  27. Tangherloni, Andrea; Nobile, Marco S.; Cazzaniga, Paolo; Capitoli, Giulia; Spolaor, Simone; Rundo, Leonardo; Mauri, Giancarlo; Besozzi, Daniela (9 September 2021). "FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks". PLOS Computational Biology. 17 (9): e1009410. Bibcode:2021PLSCB..17E9410T. doi: 10.1371/journal.pcbi.1009410 . PMC   8476010 . PMID   34499658.
  28. Hucka, M.; Finney, A.; Sauro, H. M.; Bolouri, H.; Doyle, J.; Kitano, H. (December 2001). "The Erato Systems Biology Workbench: Enabling Interaction and Exchange Between Software Tools for Computational Biology". Biocomputing 2002: 450–461. doi:10.1142/9789812799623_0042. hdl: 2299/11944 . ISBN   978-981-02-4777-5. PMID   11928498.
  29. Kawasaki, Regiane; Baraúna, Rafael A.; Silva, Artur; Carepo, Marta S. P.; Oliveira, Rui; Marques, Rodolfo; Ramos, Rommel T. J.; Schneider, Maria P. C. (2016). "Reconstruction of the Fatty Acid Biosynthetic Pathway of Exiguobacterium antarcticum B7 Based on Genomic and Bibliomic Data". BioMed Research International. 2016: 1–9. doi: 10.1155/2016/7863706 . PMC   4993939 . PMID   27595107.
  30. Andrews, Steven S.; Bray, Dennis (2004). "Stochastic simulation of chemical reactions with spatial resolution and single molecule detail". Physical Biology. 1 (3–4): 137–151. Bibcode:2004PhBio...1..137A. doi:10.1088/1478-3967/1/3/001. PMID   16204833. S2CID   16394428.
  31. Andrews, Steven S.; Addy, Nathan J.; Brent, Roger; Arkin, Adam P. (2010). "Detailed simulations of cell biology with Smoldyn 2.1". PLOS Comput. Biol. 6 (3): e1000705. Bibcode:2010PLSCB...6E0705A. doi: 10.1371/journal.pcbi.1000705 . PMC   2837389 . PMID   20300644.
  32. Andrews, Steven S. (2017). "Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction, and a library interface". Bioinformatics. 33 (5): 710–717. doi: 10.1093/bioinformatics/btw700 . PMID   28365760.
  33. Singh, Dilawar; Andrews, Steven S. (2022). "Python interfaces for the Smoldyn simulator". Bioinformatics. 38 (1): 291–293. doi:10.1093/bioinformatics/btab530. PMID   34293100.
  34. Arjunan, S.N.V.; Takahashi, K. (2017). Multi-algorithm particle simulations with Spatiocyte. Methods in Molecular Biology. Vol. 1611. pp. 219–236.
  35. Arjunan, S.N.V.; Miyauchi, A.; Iwamoto, K.; Takahashi, K. (2020). "pSpatiocyte: a high-performance simulator for intracellular reaction-diffusion systems". BMC Bioinformatics. 21 (1): 33. doi: 10.1186/s12859-019-3338-8 . PMC   6990473 . PMID   31996129.
  36. Michalski, P.J.; Loew, L.M. (2016). "SpringSaLaD: a spatial, particle-based biochemical simulation platform with excluded volume". Biophys. J. 110 (3): 523–529. Bibcode:2016BpJ...110..523M. doi:10.1016/j.bpj.2015.12.026. PMC   4744174 . PMID   26840718.
  37. Hepburn, Iain; Chen, Weiliang; Wils, Stefan; De Schutter, Erik (May 2012). "STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies". BMC Systems Biology. 7 (1): 36. doi: 10.1186/1752-0509-6-36 . PMC   3472240 . PMID   22574658. S2CID   9165862.
  38. Chen, Weiliang; De Schutter, Erik (February 2017). "Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers". Frontiers in Neuroinformatics. 11 (1): 13. doi: 10.3389/fninf.2017.00013 . PMC   5301017 . PMID   28239346.
  39. Hepburn, Iain; Chen, Weiliang; De Schutter, Erik (August 2016). "Accurate reaction-diffusion operator splitting on tetrahedral meshes for parallel stochastic molecular simulations". The Journal of Chemical Physics. 145 (5): 054118. arXiv: 1512.03126 . Bibcode:2016JChPh.145e4118H. doi:10.1063/1.4960034. PMID   27497550. S2CID   17356298.
  40. Chen, Weiliang; Carel, Tristan; Awile, Omar; Cantarutti, Nicola; Castiglioni, Giacomo; Cattabiani, Alessandro; Del Marmol, Baudouin; Hepburn, Iain; King, James G.; Kotsalos, Christos; Kumbhar, Pramod; Lallouette, Jules; Melchior, Samuel; Schürmann, Felix; De Schutter, Erik (October 2022). "STEPS 4.0: Fast and memory-efficient molecular simulations of neurons at the nanoscale". Frontiers in Neuroinformatics. 16: 883742. doi: 10.3389/fninf.2022.883742 . ISSN   1662-5196. PMC   9645802 . PMID   36387588.
  41. Choi, Kiri; Medley, J. Kyle; König, Matthias; Stocking, Kaylene; Smith, Lucian; Gu, Stanley; Sauro, Herbert M. (September 2018). "Tellurium: An extensible python-based modeling environment for systems and synthetic biology". Biosystems. 171: 74–79. doi:10.1016/j.biosystems.2018.07.006. PMC   6108935 . PMID   30053414.
  42. Pease, Nicholas A.; Nguyen, Phuc H.B.; Woodworth, Marcus A.; Ng, Kenneth K.H.; Irwin, Blythe; Vaughan, Joshua C.; Kueh, Hao Yuan (March 2021). "Tunable, division-independent control of gene activation timing by a polycomb switch". Cell Reports. 34 (12): 108888. doi:10.1016/j.celrep.2021.108888. PMC   8024876 . PMID   33761349.
  43. Drawert, B.; Engblom, S.; Hellander, A (2012). "URDME: A modular framework for stochastic simulation of reaction-transport processes in complex geometries". BMC Systems Biology. 6: 76. doi: 10.1186/1752-0509-6-76 . PMC   3439286 . PMID   22727185.
  44. Schaff, J.; Fink, C.C.; Slepchenko, B.; Carson, J.H.; Loew, L.M. (September 1997). "A general computational framework for modeling cellular structure and function". Biophysical Journal. 73 (3): 1135–1146. Bibcode:1997BpJ....73.1135S. doi:10.1016/S0006-3495(97)78146-3. PMC   1181013 . PMID   9284281. S2CID   39818739.
  45. Cowan, Ann E.; Moraru, Ion I.; Schaff, James C.; Slepchenko, Boris M.; Loew, Leslie M. (2012). "Spatial Modeling of Cell Signaling Networks". Computational Methods in Cell Biology. Vol. 110. pp. 195–221. doi:10.1016/B978-0-12-388403-9.00008-4. ISBN   9780123884039. PMC   3519356 . PMID   22482950.
  46. Christensen, Carl D; Hofmeyr, Jan-Hendrik S; Rohwer, Johann M (1 January 2018). "PySCeSToolbox: a collection of metabolic pathway analysis tools". Bioinformatics. 34 (1): 124–125. doi: 10.1093/bioinformatics/btx567 . PMID   28968872.
  47. Schöneberg, J; Ullrich, A; Noé, F (2014). "Simulation tools for particle-based reaction-diffusion dynamics in continuous space". BMC Biophys. 7 (1): 11. doi: 10.1186/s13628-014-0011-5 . PMC   4347613 . PMID   25737778.
  48. Andrews, Steven S. (2018). "Particle-Based Stochastic Simulators". Encyclopedia of Computational Neuroscience. Vol. 10. pp. 978–1. doi:10.1007/978-1-4614-7320-6_191-2. ISBN   978-1-4614-7320-6.
  49. Stiles, JR; Bartol, TM (2001). "Chapter 4, Monte Carlo methods for simulating realistic synaptic microphysiology using MCell". In: Computational neuroscience, realistic modeling for experimentalists, De Schutter, E (ed.). Boca Raton: CRC Press: 87–127.{{cite journal}}: Cite journal requires |journal= (help)
  50. Stefan, MI; Bartol, TM; Sejnowski, TJ; Kennedy, MB (2014). "Multi-state modeling of biomolecules". PLOS Comput Biol. 10 (9): e1003844. Bibcode:2014PLSCB..10E3844S. doi: 10.1371/journal.pcbi.1003844 . PMC   4201162 . PMID   25254957.
  51. Stiles, JR; Van Helden, D; Bartol, TM; Salpeter, EE; Salpeter, MM (1996). "Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle". Proceedings of the National Academy of Sciences, USA. 93 (12): 5747–5752. Bibcode:1996PNAS...93.5747S. doi: 10.1073/pnas.93.12.5747 . PMC   39132 . PMID   8650164.
  52. Andrews, SS (2017). "Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction and a library interface". Bioinformatics. 33 (5): 710–717. doi: 10.1093/bioinformatics/btw700 . PMID   28365760.
  53. Andrews, SS; Addy, NJ; Brent, R; Arkin, AP (2010). "Detailed simulations of cell biology with Smoldyn 2.1". PLOS Comput Biol. 6 (3): e1000705. Bibcode:2010PLSCB...6E0705A. doi: 10.1371/journal.pcbi.1000705 . PMC   2837389 . PMID   20300644. S2CID   2945597.
  54. Sokolowski, TR; ten Wolde, PR (2017). "Spatial-stochastic simulation of reaction-diffusion systems". arXiv: 1705.08669 [q-bio.MN].
  55. Takahashi, K; Tănase-Nicola, S; Ten Wolde, PR (2010). "Spatio-temporal correlations can drastically change the response of a MAPK pathway". Proc Natl Acad Sci. 107 (6): 2473–2478. arXiv: 0907.0514 . Bibcode:2010PNAS..107.2473T. doi: 10.1073/pnas.0906885107 . PMC   2811204 . PMID   20133748.
  56. Tomita, M; Hashimoto, K; Takahashi, K; Shimizu, TS; et al. (1999). "E-cell: software environment for whole-cell simulation". Bioinformatics. 15 (1): 72–84. doi: 10.1093/bioinformatics/15.1.72 . PMID   10068694.
  57. Michalski, PJ; Loew, LM (2016). "SpringSaLaD: a spatial, particle-based biochemical simulation platform with excluded volume". Biophys J. 110 (3): 523–529. Bibcode:2016BpJ...110..523M. doi:10.1016/j.bpj.2015.12.026. PMC   4744174 . PMID   26840718.
  58. Schöneberg, J; Noé, F (2013). "ReaDDy-a software for particle-based reaction-diffusion dynamics in crowded cellular environments". PLOS ONE. 8 (9): e74261. Bibcode:2013PLoSO...874261S. doi: 10.1371/journal.pone.0074261 . PMC   3770580 . PMID   24040218.
  59. Schälte, Yannik; Fröhlich, Fabian; Jost, Paul J.; Vanhoefer, Jakob; Pathirana, Dilan; Stapor, Paul; Lakrisenko, Polina; Wang, Dantong; Raimúndez, Elba; Merkt, Simon; Schmiester, Leonard; Städter, Philipp; Grein, Stephan; Dudkin, Erika; Doresic, Domagoj (2023). "pyPESTO: A modular and scalable tool for parameter estimation for dynamic models". arXiv: 2305.01821 [q-bio.QM].
  60. Schmiester, Leonard; Schälte, Yannik; Bergmann, Frank T.; Camba, Tacio; Dudkin, Erika; Egert, Janine; Fröhlich, Fabian; Fuhrmann, Lara; Hauber, Adrian L.; Kemmer, Svenja; Lakrisenko, Polina; Loos, Carolin; Merkt, Simon; Müller, Wolfgang; Pathirana, Dilan; Raimúndez, Elba; Refisch, Lukas; Rosenblatt, Marcus; Stapor, Paul L.; Städter, Philipp; Wang, Dantong; Wieland, Franz-Georg; Banga, Julio R.; Timmer, Jens; Villaverde, Alejandro F.; Sahle, Sven; Kreutz, Clemens; Hasenauer, Jan; Weindl, Daniel (26 January 2021). "PEtab—Interoperable specification of parameter estimation problems in systems biology". PLOS Computational Biology. 17 (1): e1008646. arXiv: 2004.01154 . Bibcode:2021PLSCB..17E8646S. doi: 10.1371/journal.pcbi.1008646 . PMC   7864467 . PMID   33497393.
  61. Based on earliest publication date
  62. Garfinkel, David (August 1968). "A machine-independent language for the simulation of complex chemical and biochemical systems". Computers and Biomedical Research. 2 (1): 31–44. doi:10.1016/0010-4809(68)90006-2. PMID   5743538.
  63. Burns, Jim (1 March 1973). Metabolic Control Anlaysis (Thesis). doi:10.5281/zenodo.7240738.
  64. Park, D.J.M.; Wright, B.E. (March 1973). "Metasim, a general purpose metabolic simulator for studying cellular transformations". Computer Programs in Biomedicine. 3 (1): 10–26. doi:10.1016/0010-468X(73)90010-X. PMID   4735157.
  65. Based on earliest publication date
  66. Garny, A.; Kohl, P.; Noble, D. (2003-12-01). "Cellular open resource (cor): a public cellml based environment for modeling biological function". International Journal of Bifurcation and Chaos. 13 (12): 3579–3590. Bibcode:2003IJBC...13.3579G. doi:10.1142/S021812740300882X. ISSN   0218-1274.
  67. Goryanin, I.; Hodgman, T. C.; Selkov, E. (1 September 1999). "Mathematical simulation and analysis of cellular metabolism and regulation". Bioinformatics. 15 (9): 749–758. doi: 10.1093/bioinformatics/15.9.749 . PMID   10498775.
  68. Tomita, M; Hashimoto, K; Takahashi, K; Shimizu, T.; Matsuzaki, Y; Miyoshi, F; Saito, K; Tanida, S; Yugi, K; Venter, J.; Hutchison, C. (1 January 1999). "E-CELL: software environment for whole-cell simulation". Bioinformatics. 15 (1): 72–84. doi: 10.1093/bioinformatics/15.1.72 . PMID   10068694.
  69. Mendes, Pedro (1993). "GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems". Bioinformatics. 9 (5): 563–571. doi:10.1093/bioinformatics/9.5.563. PMID   8293329.
  70. Sauro, Herbert (2000). JARNAC: a system for interactive metabolic analysis. Animating the Cellular Map: Proceedings of the 9th International Meeting on BioThermoKinetics. pp. 221–228.
  71. Butterworth, Erik; Jardine, Bartholomew E.; Raymond, Gary M.; Neal, Maxwell L.; Bassingthwaighte, James B. (30 December 2013). "JSim, an open-source modeling system for data analysis". F1000Research. 2: 288. doi: 10.12688/f1000research.2-288.v1 . PMC   3901508 . PMID   24555116.
  72. Hofmeyr, J. H. S.; Merwe, K. J. van der (1986). "METAMOD: software for steady-state modelling and control analysis of metabolic pathways on the BBC microcomputer". Bioinformatics. 2 (4): 243–249. doi:10.1093/bioinformatics/2.4.243. PMID   3450367.
  73. Cornish-Bowden, Athel; Hofmeyr, Jan-Hendrik S. (1991). "MetaModel: a program for modelling and control analysis of metabolic pathways on the IBM PC and compatibles". Bioinformatics. 7 (1): 89–93. doi:10.1093/bioinformatics/7.1.89. PMID   2004280.
  74. Ehlde, Magnus; Zacchi, Guido (1995). "MIST: a user-friendly metabolic simulator". Bioinformatics. 11 (2): 201–207. doi:10.1093/bioinformatics/11.2.201. PMID   7620994.
  75. Sauro, Herbert M.; Fell, David A. (1991). "SCAMP: A metabolic simulator and control analysis program". Mathematical and Computer Modelling. 15 (12): 15–28. doi: 10.1016/0895-7177(91)90038-9 .