Loewner energy

Last updated

In complex analysis, the Loewner energy is an invariant of a domain in the complex plane, or equivalently an invariant of the boundary of the domain, a simple closed curve.

According to the uniformization theorem, every domain has a conformal mapping to one of three uniform Riemann surfaces: an open unit disk, the complex plane, or the Riemann sphere. In 1923 work on the Bieberbach conjecture, Charles Loewner showed that (a suitable normalization of) this uniform mapping can be described as the solution to the Loewner differential equation, which depends on a certain real-valued function, the driving function, defined on the boundary of the domain. [1] The Loewner energy was originally defined by Yilin Wang and (independently) by Peter Friz and Atul Shekhar as the Dirichlet energy of this driving function. [2] [3] In later work, Wang found an equivalent definition of the Loewner energy as the Dirichlet energy of the logarithmic derivative of the conformal mapping itself. [4]

This energy is bounded when the boundary of the domain is a Weil–Petersson curve, a kind of quasicircle obeying an additional smoothness condition. [4]

Related Research Articles

<span class="mw-page-title-main">Riemann mapping theorem</span> Mathematical theorem

In complex analysis, the Riemann mapping theorem states that if is a non-empty simply connected open subset of the complex number plane which is not all of , then there exists a biholomorphic mapping from onto the open unit disk

<span class="mw-page-title-main">Conformal map</span> Mathematical function which preserves angles

In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.

In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and consequential conjectures about connections between number theory and geometry. Proposed by Robert Langlands, it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics."

In mathematics, the uniformization theorem states that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces.

In mathematics, Carathéodory's theorem is a theorem in complex analysis, named after Constantin Carathéodory, which extends the Riemann mapping theorem. The theorem, published by Carathéodory in 1913, states that any conformal mapping sending the unit disk to some region in the complex plane bounded by a Jordan curve extends continuously to a homeomorphism from the unit circle onto the Jordan curve. The result is one of Carathéodory's results on prime ends and the boundary behaviour of univalent holomorphic functions.

<span class="mw-page-title-main">Systolic geometry</span> Form of differential geometry

In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also Introduction to systolic geometry.

In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called symplectic Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds.

Geometric function theory is the study of geometric properties of analytic functions. A fundamental result in the theory is the Riemann mapping theorem.

<span class="mw-page-title-main">Schramm–Loewner evolution</span>

In probability theory, the Schramm–Loewner evolution with parameter κ, also known as stochastic Loewner evolution (SLEκ), is a family of random planar curves that have been proven to be the scaling limit of a variety of two-dimensional lattice models in statistical mechanics. Given a parameter κ and a domain U in the complex plane, it gives a family of random curves in U, with κ controlling how much the curve turns. There are two main variants of SLE, chordal SLE which gives a family of random curves from two fixed boundary points, and radial SLE, which gives a family of random curves from a fixed boundary point to a fixed interior point. These curves are defined to satisfy conformal invariance and a domain Markov property.

<span class="mw-page-title-main">Oded Schramm</span> Israeli mathematician

Oded Schramm was an Israeli-American mathematician known for the invention of the Schramm–Loewner evolution (SLE) and for working at the intersection of conformal field theory and probability theory.

In differential geometry, Loewner's torus inequality is an inequality due to Charles Loewner. It relates the systole and the area of an arbitrary Riemannian metric on the 2-torus.

<span class="mw-page-title-main">Schwarz alternating method</span> Iterative method in conformal mapping

In mathematics, the Schwarz alternating method or alternating process is an iterative method introduced in 1869–1870 by Hermann Schwarz in the theory of conformal mapping. Given two overlapping regions in the complex plane in each of which the Dirichlet problem could be solved, Schwarz described an iterative method for solving the Dirichlet problem in their union, provided their intersection was suitably well behaved. This was one of several constructive techniques of conformal mapping developed by Schwarz as a contribution to the problem of uniformization, posed by Riemann in the 1850s and first resolved rigorously by Koebe and Poincaré in 1907. It furnished a scheme for uniformizing the union of two regions knowing how to uniformize each of them separately, provided their intersection was topologically a disk or an annulus. From 1870 onwards Carl Neumann also contributed to this theory.

<span class="mw-page-title-main">Circle packing theorem</span> Describes the possible tangency relations between circles with disjoint interiors

The circle packing theorem describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects are called tangency graphs or contact graphs. Coin graphs are always connected, simple, and planar. The circle packing theorem states that these are the only requirements for a graph to be a coin graph:

In mathematics, the conformal radius is a way to measure the size of a simply connected planar domain D viewed from a point z in it. As opposed to notions using Euclidean distance, this notion is well-suited to use in complex analysis, in particular in conformal maps and conformal geometry.

In physics, Liouville field theory is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation.

In mathematics, the Loewner differential equation, or Loewner equation, is an ordinary differential equation discovered by Charles Loewner in 1923 in complex analysis and geometric function theory. Originally introduced for studying slit mappings, Loewner's method was later developed in 1943 by the Russian mathematician Pavel Parfenevich Kufarev (1909–1968). Any family of domains in the complex plane that expands continuously in the sense of Carathéodory to the whole plane leads to a one parameter family of conformal mappings, called a Loewner chain, as well as a two parameter family of holomorphic univalent self-mappings of the unit disk, called a Loewner semigroup. This semigroup corresponds to a time dependent holomorphic vector field on the disk given by a one parameter family of holomorphic functions on the disk with positive real part. The Loewner semigroup generalizes the notion of a univalent semigroup.

In mathematics, a planar Riemann surface is a Riemann surface sharing the topological properties of a connected open subset of the Riemann sphere. They are characterized by the topological property that the complement of every closed Jordan curve in the Riemann surface has two connected components. An equivalent characterization is the differential geometric property that every closed differential 1-form of compact support is exact. Every simply connected Riemann surface is planar. The class of planar Riemann surfaces was studied by Koebe who proved in 1910, as a generalization of the uniformization theorem, that every such surface is conformally equivalent to either the Riemann sphere or the complex plane with slits parallel to the real axis removed.

In mathematics, the curve complex is a simplicial complex C(S) associated to a finite-type surface S, which encodes the combinatorics of simple closed curves on S. The curve complex turned out to be a fundamental tool in the study of the geometry of the Teichmüller space, of mapping class groups and of Kleinian groups. It was introduced by W.J.Harvey in 1978.

Nikolai Georgievich Makarov is a Russian mathematician. He is known for his work in complex analysis and its applications to dynamical systems, probability theory and mathematical physics. He is currently the Richard Merkin Distinguished Professor of Mathematics at Caltech, where he has been teaching since 1991.

Georgii Dmitrievic Suvorov was a Soviet mathematician who made major contributions to the function theory and topology.

References

  1. Loewner, C. (1923), "Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I", Mathematische Annalen, 89 (1–2): 103–121, doi:10.1007/BF01448091, JFM   49.0714.01
  2. Wang, Yilin (2019), "The energy of a deterministic Loewner chain: reversibility and interpretation via SLE0+", Journal of the European Mathematical Society, 21 (7): 1915–1941, arXiv: 1601.05297 , doi:10.4171/JEMS/876, MR   3959854
  3. Friz, Peter K.; Shekhar, Atul (2017), "On the existence of SLE trace: finite energy drivers and non-constant κ", Probability Theory and Related Fields, 169 (1–2): 353–376, arXiv: 1511.02670 , doi:10.1007/s00440-016-0731-3, MR   3704771
  4. 1 2 Wang, Yilin (2019), "Equivalent descriptions of the Loewner energy", Inventiones Mathematicae, 218 (2): 573–621, arXiv: 1802.01999 , Bibcode:2019InMat.218..573W, doi:10.1007/s00222-019-00887-0, MR   4011706