Lorenz energy cycle

Last updated

The Lorenz energy cycle describes the generation, conversion and dissipation of energy in the general atmospheric circulation. [1] It is named after the meteorologist Edward N. Lorenz who worked on its mathematical formulation in the 1950s. [2]

Contents

Schematic representation with examples Lorenz Energy Cycle.png
Schematic representation with examples

Description

Introduction

Any atmospheric circulation system, whether it is a small-scale weather system or a large-scale zonal wind system, is maintained by the supply of kinetic energy. The development of such a system requires either a transformation of some other form of energy into kinetic energy, or the conversion of the kinetic energy of another system into that of the developing system. [3] On a global scale, the atmospheric circulation must carry energy polewards, because there is a net gain of energy in the tropics through incoming solar radiation and net loss of energy in high latitudes through thermal emission. At low latitudes, where the Hadley cell takes shape, the poleward transport of energy is done by the mean meridional circulation. At mid-latitudes in contrast, the influence of longitudinally asymmetric features, referred to as eddies, is dominant over the mean flow. For a closer examination, it is useful to split all parameters (e.g. P) into their zonal-mean (denoted by an overline, e.g. P) and their departures from the zonal mean due to orography, land-sea contrasts, weather systems and any other eddy-like features (denoted by a prime, e.g. P').

Energy reservoirs

The available potential energy is the amount of potential energy in the atmosphere that can be converted into kinetic energy. In a statically stable atmosphere, the zonal-mean available potential energy P is approximated as:

where is the integral over the Earth's entire atmosphere, ρ0 is the mean density of air, N is the buoyancy frequency, a measure of static stability, Φ is the geopotential and z* denotes a log-pressure coordinate.

Eddy available potential energy P' is approximated as:

Zonal-mean kinetic energy K is approximated as:

where u and v are the zonal and meridional components of air velocity.

Eddy kinetic energy K' is approximated as:

[1]

Sources, sinks and conversion of energy

The description of the Lorenz Energy Cycle is completed by a mathematical formalism for the generation of potential energy through diabatic heating, its conversion to kinetic energy through vertical motion of air and the dissipation of kinetic energy through friction. A conversion of zonal-mean energy to eddy energy and vice versa is possible where eddies interact with the mean flow and displace warm/cold air. [1]

Related Research Articles

Brownian motion Random motion of particles suspended in a fluid

Brownian motion, or pedesis, is the random motion of particles suspended in a medium.

Navier–Stokes equations Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are certain partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

Bernoullis principle Principle relating to fluid dynamics

In fluid dynamics, Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. The principle is named after Daniel Bernoulli who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form. The principle is only applicable for isentropic flows: when the effects of irreversible processes and non-adiabatic processes are small and can be neglected.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , , or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In quantum chemistry, electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either or . The density is determined, through definition, by the normalised -electron wavefunction which itself depends upon variables. Conversely, the density determines the wave function modulo up to a phase factor, providing the formal foundation of density functional theory.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

Stellar dynamics

Stellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The essential difference from celestial mechanics is that the number of body

Large eddy simulation

Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is currently applied in a wide variety of engineering applications, including combustion, acoustics, and simulations of the atmospheric boundary layer.

In fluid dynamics, turbulence kinetic energy (TKE) is the mean kinetic energy per unit mass associated with eddies in turbulent flow. Physically, the turbulence kinetic energy is characterised by measured root-mean-square (RMS) velocity fluctuations. In the Reynolds-averaged Navier Stokes equations, the turbulence kinetic energy can be calculated based on the closure method, i.e. a turbulence model.

Eddy diffusion

Eddy diffusion, eddy dispersion, or turbulent diffusion is a process by which substances are mixed in the atmosphere, the ocean or in any fluid system due to eddy motion. In other words, it is mixing that is caused by eddies that can vary in size from subtropical ocean gyres down to the small Kolmogorov microscales. The concept of turbulence or turbulent flow causes eddy diffusion to occur. The theory of eddy diffusion was first developed by Sir Geoffrey Ingram Taylor.

In plasma physics, the Hasegawa–Mima equation, named after Akira Hasegawa and Kunioki Mima, is an equation that describes a certain regime of plasma, where the time scales are very fast, and the distance scale in the direction of the magnetic field is long. In particular the equation is useful for describing turbulence in some tokamaks. The equation was introduced in Hasegawa and Mima's paper submitted in 1977 to Physics of Fluids, where they compared it to the results of the ATC tokamak.

The hypsometric equation, also known as the thickness equation, relates an atmospheric pressure ratio to the equivalent thickness of an atmospheric layer considering the layer mean of virtual temperature, gravity, and occasionally wind. It is derived from the hydrostatic equation and the ideal gas law.

Mathematical descriptions of the electromagnetic field Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

Retarded potential Type of potential in electrodynamics

In electrodynamics, the retarded potentials are the electromagnetic potentials for the electromagnetic field generated by time-varying electric current or charge distributions in the past. The fields propagate at the speed of light c, so the delay of the fields connecting cause and effect at earlier and later times is an important factor: the signal takes a finite time to propagate from a point in the charge or current distribution to another point in space, see figure below.

In fluid dynamics, Luke's variational principle is a Lagrangian variational description of the motion of surface waves on a fluid with a free surface, under the action of gravity. This principle is named after J.C. Luke, who published it in 1967. This variational principle is for incompressible and inviscid potential flows, and is used to derive approximate wave models like the mild-slope equation, or using the averaged Lagrangian approach for wave propagation in inhomogeneous media.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

Radiation stress Depth-integrated excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

The Landau kinetic equation is a transport equation of weakly-coupled charged particles performing Coulomb collisions in a plasma.

A baroclinic instability is a fluid dynamical instability of fundamental importance in the atmosphere and ocean. It can lead to the formation of transient mesoscale eddies, with a horizontal scale of 10-100 km. In contrast, flows on the largest scale in the ocean are described as ocean currents, the largest scale eddies are mostly created by shearing of two ocean currents and static mesoscale eddies are formed by the flow around an obstacle (as seen in the animation on eddy. Mesoscale eddies are circular currents with swirling motion and account for approximately 90% of the ocean's total kinetic energy. Therefore, they are key in mixing and transport of for example heat, salt and nutrients.

References

  1. 1 2 3 Holton, James R. (2004). An Introduction To Dynamic Meteorology (PDF) (4th ed.). Elsevier Academic Press. pp. 337–343. ISBN   978-0-12-354015-7 . Retrieved 2 March 2018.
  2. Lorenz, Edward N. (May 1955). "Available Potential Energy and the Maintenance of the General Circulation". Tellus. VII (2): 157–167. doi:10.1111/j.2153-3490.1955.tb01148.x.
  3. Lorenz, Edward N. (May 1960). "Energy and Numerical Weather Prediction". Tellus. 12 (4): 364–373. doi: 10.3402/tellusa.v12i4.9420 .