Lost time

Last updated

Lost time is the term within traffic engineering for the time during which no vehicles are able to pass through an intersection despite the traffic signal displaying a green (go) signal. The total lost time is the sum of two separate elements: start-up lost time and clearance lost time. Start-up lost time happens when a traffic signal changes from red (stop) to green (go). Some amount of time elapses between the signal changing from red to green and the first queued vehicle moving through the intersection. There is then an additional amount of time for the next vehicle to begin moving and pass through the intersection, and so on. The total time taken for all waiting drivers to react and accelerate is the start-up lost time. Clearance lost time is the time lost to stopping a line of vehicles at the end of a green phase. Lost time is always measured in seconds.

Start-up lost time can be calculated as the sum of the differences between the headways for the first cars in line and the average headway through the intersection at a theoretical maximum flow, the saturation flow rate . When no observations have been made, the start-up lost time is assumed to be 2.0 seconds as a default value.

Since clearance lost time is often not observable since observation requires that some vehicles which were waiting at the start of a green phase still be waiting when the green phase ends, it is typically determined through the equation , where is the clearance lost time, is the yellow time, is the all-red interval time during which the traffic signal is red for all directions, and is the portion of the yellow and all-red times during which vehicles are illegally in the intersection and has a default value of 2.0 seconds in HCM. ALDOT's Traffic Signal Design Guide and Timing Manual, on the other hand, determines clearance lost time to be half of the yellow interval plus the entire all-red interval.

In order to find out how clearance lost time can be calculated see [1] and. [2] In this study, clearance lost time was measured in the field and compared with the default values specified in HCM and ALDOT's manual.

Related Research Articles

<span class="mw-page-title-main">Traffic</span> Phenomenon of movement by humans on foot or using vehicles

Traffic comprises pedestrians, vehicles, ridden or herded animals, trains, and other conveyances that use public ways (roads) for travel and transportation.

<span class="mw-page-title-main">Intersection (road)</span> Road junction where two or more roads either meet or cross at grade

An intersection or an at-grade junction is a junction where two or more roads converge, diverge, meet or cross at the same height, as opposed to an interchange, which uses bridges or tunnels to separate different roads. Major intersections are often delineated by gores and may be classified by road segments, traffic controls and lane design.

<span class="mw-page-title-main">Pedestrian crossing</span> Place designated for pedestrians to cross a road, street or avenue

A pedestrian crossing is a place designated for pedestrians to cross a road, street or avenue. The term "pedestrian crossing" is also used in the Vienna and Geneva Conventions, both of which pertain to road signs and road traffic.

<span class="mw-page-title-main">Traffic light</span> Signaling device to control competing flows of traffic

Traffic lights, traffic signals, or stoplights – known also as robots in South Africa are signalling devices positioned at road intersections, pedestrian crossings, and other locations in order to control flows of traffic.

<span class="mw-page-title-main">Red light camera</span>

A red light camera is a type of traffic enforcement camera that photographs a vehicle that has entered an intersection after the traffic signal controlling the intersection has turned red. By automatically photographing vehicles that run red lights, the photo is evidence that assists authorities in their enforcement of traffic laws. Generally the camera is triggered when a vehicle enters the intersection after the traffic signal has turned red.

<span class="mw-page-title-main">1995 Fox River Grove bus–train collision</span> Grade crossing collision in Fox River Grove, Illinois

The 1995 Fox River Grove bus–train collision was a grade crossing collision that killed seven students riding aboard a school bus in Fox River Grove, Illinois, on the morning of October 25, 1995. The school bus, driven by a substitute driver, was stopped at a traffic light with the rearmost portion extending onto a portion of the railroad tracks when it was struck by a Metra Union Pacific / Northwest Line train en route to Chicago.

<span class="mw-page-title-main">Advanced stop line</span>

An advanced stop line (ASL), also called advanced stop box or bike box, is a type of road marking at signalised road junctions allowing certain types of vehicle a head start when the traffic signal changes from red to green. Advanced stop lines are implemented widely in Denmark, the United Kingdom, and other European countries but the idea was first conceptualized by transportation planner Michael Lynch for the city of Portland, Oregon in response to numerous bike crashes at intersections.

Signal timing is the technique which traffic engineers use to distribute right-of-way at a signalized intersection. The process includes selecting appropriate values for timing, which are implemented in specialized traffic signal controllers. Signal timing involves deciding how much green time the traffic signal provides an intersection by movement or approach, how long the pedestrian WALK signal should be, whether trains or buses should be prioritized, and numerous other factors.

In mathematics and transportation engineering, traffic flow is the study of interactions between travellers and infrastructure, with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.

<span class="mw-page-title-main">Variations in traffic light operation</span>

In traffic engineering, there are regional and national variations in traffic light operation. This may be in the standard traffic light sequence or by the use of special signals.

Headway is the distance or duration between vehicles in a transit system measured in space or time. The minimum headway is the shortest such distance or time achievable by a system without a reduction in the speed of vehicles. The precise definition varies depending on the application, but it is most commonly measured as the distance from the tip of one vehicle to the tip of the next one behind it. It can be expressed as the distance between vehicles, or as time it will take for the trailing vehicle to cover that distance. A "shorter" headway signifies closer spacing between the vehicles. Airplanes operate with headways measured in hours or days, freight trains and commuter rail systems might have headways measured in parts of an hour, metro and light rail systems operate with headways on the order of 90 seconds to 20 minutes, and vehicles on a freeway can have as little as 2 seconds headway between them.

<span class="mw-page-title-main">Bus priority signal</span>

Bus priority or transit signal priority (TSP) is a name for various techniques to improve service and reduce delay for mass transit vehicles at intersections controlled by traffic signals. TSP techniques are most commonly associated with buses, but can also be used along tram/streetcar or light rail lines, especially those that mix with or conflict with general vehicular traffic.

Intersection Capacity Utilization (ICU) method is a tool for measuring a roadway intersection's capacity. It is ideal for transportation planning applications such as roadway design, congestion management programs and traffic impact studies. It is not intended for traffic operations or signal timing design. ICU is also defined as "the sum of the ratios of approach volume divided by approach capacity for each leg of intersection which controls overall traffic signal timing plus an allowance for clearance times." The ICU tells how much reserve capacity is available or how much the intersection is overcapacity. The ICU does not predict delay, but it can be used to predict how often an intersection will experience congestion.

<span class="mw-page-title-main">Queue jump</span> Road provision allowing buses to get to the front of traffic at intersections

A queue jump is a type of roadway geometry used to provide preference to buses at intersections, often found in bus rapid transit systems. It consists of an additional travel lane on the approach to a signalised intersection. This lane is often restricted to transit vehicles only. A queue jump lane is usually accompanied by a signal which provides a phase specifically for vehicles within the queue jump. Vehicles in the queue jump lane get a "head-start" over other queued vehicles and can therefore merge into the regular travel lanes immediately beyond the signal. The intent of the lane is to allow the higher-capacity vehicles to cut to the front of the queue, reducing the delay caused by the signal and improving the operational efficiency of the transit system.

<span class="mw-page-title-main">Seagull intersection</span> Type of three-way road intersection

A seagull intersection or continuous green T-intersection is a type of three-way road intersection, usually used on high traffic volume roads and dual carriageways. This form of intersection is popular in Australia and New Zealand, and sometimes used in the United States and other countries.

<span class="mw-page-title-main">Xiaolüren</span>

Xiaolüren can refer to any pedestrian traffic lights, but most often the animated traffic light system originally from Taiwan. It was first implemented in Taipei City between Songshou Road and Songzhi Road, in 1999, and came into widespread use around the country and almost replaced incandescent, static and non-animated pedestrian traffic lights within a few years.

<span class="mw-page-title-main">HAWK beacon</span> Traffic control device

A HAWK beacon is a traffic control device used to stop road traffic and allow pedestrians to cross safely. It is officially known as a pedestrian hybrid beacon. The purpose of a HAWK beacon is to allow protected pedestrian crossings, stopping vehicular traffic only as needed. The HAWK beacon is a type of traffic control alternative to traffic control signals and/or where an intersection does not meet traffic signal warrants.

<span class="mw-page-title-main">Traffic light control and coordination</span>

The normal function of traffic lights requires more than sight control and coordination to ensure that traffic and pedestrians move as smoothly, and safely as possible. A variety of different control systems are used to accomplish this, ranging from simple clockwork mechanisms to sophisticated computerized control and coordination systems that self-adjust to minimize delay to people using the junction.

Sidra Intersection is a software package used for intersection (junction) and network capacity, level of service and performance analysis, and signalised intersection and network timing calculations by traffic design, operations and planning professionals.

<span class="mw-page-title-main">Protected intersection</span> At-grade road junction in which cyclists and pedestrians are separated from cars

A protected intersection or protected junction, also known as a Dutch-style junction, is a type of at-grade road junction in which cyclists and pedestrians are separated from cars. The primary aim of junction protection is to make pedestrians and cyclists safer and feel safer at road junctions.

References

  1. Fatemeh Baratian-Ghorghi; Huaguo Zhou; Isaac Wasilefsky (2015). "Impacts of Red Light Photo Enforcement Cameras on Clearance Lost Time at Signalized Intersections". Transportation Research Board. Retrieved 17 June 2015.
  2. Fatemeh Baratian-Ghorghi; Huaguo Zhou; Isaac Wasilefsky (2015). "Effect of Red-Light Cameras on Capacity of Signalized Intersections". Journal of Transportation Engineering. Retrieved 27 December 2015.